Write your message

XML Persian Abstract Print

1- Department of marine science and technology, Science and Research Branch, Islamic Azad University
2- Noandishan Fan & Tejarat Eng. Trd. Co.
Abstract:   (425 Views)
The morphodynamic status of the coasts is considered as a preliminary estimate of the risk of rip current formation that can be used for shoreline management. Rip currents are a common type of nearshore cycles that can have a major impact on any area of ​​the coast, and lead to the drowning of many people in the sea every year, so predicting these currents will help save lives. In this study, the beach state model (Ω-RTR) has been used to estimate the risk of rip current formation in vicinity of Bushehr coastal waters of Iran. By examining the characteristics of waves, tidal phenomena and sediment in 16 stations of Bushehr province, an initial assessment of the potential for the formation of rip current was performed. The results show that the coasts of Bushehr province are mainly the wave dominate and with the advance from north to south of the coastline, the state of the coast has changed from Ultra-Dissipative to Dissipative and in the central and southern stations of Bushehr province are more likely to expand the rip current. 
Full-Text [PDF 915 kb]   (119 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2022/05/3 | Accepted: 2022/09/7

1. Shepard, F.P. and Inman, D.L., (1950(, Nearshore circulation, In: Proceedings of the 1st Conference on Coastal Engineering. ASCE, Vol.1, p.50-59. [DOI:10.9753/icce.v1.5]
2. Cook, D.O., (1970), The occurrence and geologicwork of rip currents off southern California, Marin Geology, Vol.9, p.173-186. [DOI:10.1016/0025-3227(70)90013-7]
3. Inman, D.L. and Brush, B.M., (1973), The Coastal challenge, Science, Vol.181, p.20-32. [DOI:10.1126/science.181.4094.20]
4. Brown, J., MacMahan, J.H., Reniers, A. and Thornton, E., (2009), Surf zone diffusivity on a rip channeled beach, J. Geophys. Res., Vol.114, P.11-15. [DOI:10.1029/2008JC005158]
5. Shanks, A.L., Morgan, S.G., MacMahan, J.H. and Reniers, A.J.H.M., (2010), Surf zone physical and morphologica regime as determinants of temporal and spatial variation in larval recruitment, J. Exp. Mar. Biol. Ecol., Vol.392, P.140-150. [DOI:10.1016/j.jembe.2010.04.018]
6. Loureiro, C., Ferreira, O. and Cooper, J.A.G., (2011), Morphologic change and morphodynamics at high-energy embayed beaches in southwestern Portugal, In: Proceedings of Coastal Sediments 2011. World Scientific, p.1375-1389. [DOI:10.1142/9789814355537_0104]
7. McCarroll,R.J., Castelle, B., Brander, R.W. and Scott, T., (2015), Modelling rip current flow and bather escape strategies across a transverse bar and rip channel morphology, Geomorphology, Vol,246 , p.502-518. [DOI:10.1016/j.geomorph.2015.06.041]
8. Barrett, G. and Houser, C., (2012), Identifying hotspots of rip current activity using wavelet analysis at Pensacola Beach, Florida. Phys. Geogr., Vol.33, p.32-49. [DOI:10.2747/0272-3646.33.1.32]
9. Brander, R. W., (2012), Rip Currents, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia, p.335-379.
10. Klein, A.H. da F., Santana, G.G., Diehl, F.L. and Menezes, J.T., (2003), Analysis of hazards associated with sea bathing: results of five years work in oceanic beaches of Santa Catarina State, Southern Brazil, J. Coastal Res., SI 35, p.107-116.
11. Carey, W. and Rogers, S., (2005), Rip currents - coordinating coastal research, outreach and forecast methodologies to improve public safety, In: Proceedings of Coastal Disasters 2005. ASCE, p. 285-296. [DOI:10.1061/40774(176)29]
12. McCool, J.P., Moran, K., Ameratunga, S. and Robinson, E., (2008), New Zealand beachgoers' swimming bheaviours, swimming abilities, and perception of drowning risk, Int. J. Aquat. Res. Educ., Vol.1, p.7-15. [DOI:10.25035/ijare.02.01.02]
13. Arun Kumar, S.V.V. and Prasad, K.V.S.R., (2014), Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents, Nat. Hazards, Vol.70, p.313-335. [DOI:10.1007/s11069-013-0812-x]
14. Scott, T.M., Masselink, G., Austin, M.J. and Russell, P., (2014), Controls on macrotidal rip current circulation and hazard, Geomorphology, Vol.214, p.198-215. [DOI:10.1016/j.geomorph.2014.02.005]
15. Gholami, Z., Chegini, V. and Lari,K., (2009), Zoning of rip currents on the west coast of Gilan, 11th Marine Industries Conference.(In Persian)
16. Vaziri, Z., Bidokhti, A.A., Ezam, M., Khaniki, A.K. and Jahromi, A.,(2014), Investigating the conditions of formation rip currents and their characteristics in Mazandaran coasts in summer season, 16th Marine Industries Conference.(In Persian)
17. Komijani, F., (2016), Beach hydrodynamic classification of south coasts of caspian sea- Mazandaran Province, Journal of Marine Engineering, Vol.24, p.53-64.(In Persian)
18. Shiea-Ali, M., Chegini, V. and Valipour, A., (2017), Costal classification of Hormozgan Province using experimental methods, Iranian Journal of Geophysics, Vol.11, p. 63-75.(In Persian)
19. Valipour, A., (2018), Study of channel rip mobility pattern, Hydrophysics, Vol.4, P. 45-56. (In Persian)
20. Shafiei, S.B. and Barani, G.A., (2011), Field investigation of rip currents along the southern coast of the Caspian Sea, Scientia Iranica, Vol.18, P. 878-884. (In Persian). [DOI:10.1016/j.scient.2011.07.017]
21. Valipour, A., (2018), Investigation of the variations of rip density in the intermediate beaches, 18 th Iranian Geophysical Conference. (In Persian)
22. Ghorbani, A. and Rasulyjamnany, A., (2012), The modelling of rip channel in creation of rip currents. Indian J. Sci. Technol., Vol.4, p. 2529-2533. (In Persian) [DOI:10.17485/ijst/2012/v5i4.16]
23. Barzegar, M., Ketabdari, M.J., Kayhan, K. and Palaniappan, D. (2020), Boussinesq modelling of waves and currents in the presence of submerged detached/discontinuous breakwaters, Int. J. Eng. Model., Vol 33, p. 45-61. [DOI:10.31534/engmod.2020.3-4.ri.03a]
24. Zhiqiang Li., (2016), Rip current hazards in South China headland beaches, Ocean & Coastal Management, Vol.121, p.23-32. [DOI:10.1016/j.ocecoaman.2015.12.005]
25. PMO, Integrated Coastal Zone Management of Boushehr Province in Synthesis report of Bushehr, M. Gharibreza and F. Vafaei, Editors. 2021, Ports and Maritime Organization: Tehran. p. 413.
26. Short, A.D., (2006), Australian beach systems-nature and distribution, Journal of Coastal Research, Vol.22, p.11-27. [DOI:10.2112/05A-0002.1]
27. Wright, L.D., Short, A.D. and Green, M.O.,( 1985), Short-term changes in themorphodynamic states of beaches and surf zones: an empirical model, Mar. Geol., Vol.62, p.339-364. [DOI:10.1016/0025-3227(85)90123-9]
28. Short. A. D., (1996), The role of wave height, period, slope, tide range and embaymentisation in beach classifications: a review, Revista Chilena de Historia Natural, Vol.69, p.589-604.
29. Masselink, G. and Short, A.D., (1993), The effect of tide range on beach morphodynamics and morphology: a conceptual beach model, J. Coastal Res., Vol.9, p.785-800.
30. Arozarena, I., Houser, C., Echeverria, A.G. and Brannstrom, C., (2015), The rip current hazard in Costa Rica, Nat. Hazards, Vol.77, p.753-768. [DOI:10.1007/s11069-015-1626-9]
31. Benedet, L., Finkl, C. and Klein, A.H.F., (2004), Morphodynamic classification of beaches on the Atlantic coast of Florida: geographical variability of beach types, beach safety and coastal hazards, J. Coast. Res., Vol.39, p.360-365.
32. Komar, P.D. and Gaughan, M.K., (1972), Airy wave theory and breaker height prediction, in Proceedings, 13th International Conference on Coastal Engineering, Vancouver, Canada: American Society of Civil Engineers, p.405-418. [DOI:10.1061/9780872620490.023]
33. Fredsoe, J. and Deigaard, R., (1992), Mechanics of coastal sediment transport, Advanced Series on Ocean Engineering, Vol.3, Series Editor-in-Chief Philip 1-F Liu. World Scientific Publishing Co. Pte.Ltd. [DOI:10.1142/1546]
34. Liu, Z., (2001), Sediment transport, Laboratoriet for Hydraulik og Havnebygning, Institut for Vand, Jord og Miljøteknik, Aalborg University.
35. Masselink, G. and Hegge, B., (1995), Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia, Marine Geology, Vol.129, p.1-23. [DOI:10.1016/0025-3227(95)00104-2]
36. Shepard, F.P., Emery, K.O. and Lafond, E.C., (1941), Rip currents: a process of geological importance, J. Geol., Vol.49, p.338-369. [DOI:10.1086/624971]
37. Bowen, A.J. and Inman, D.L., (1969), Rip Currents, II. Laboratory and Field Observations, Vol.74, p.5479-5490. [DOI:10.1029/JC074i023p05479]
38. Engle J., MacMahan J., Thieke R. J., Hanes D. M. and Dean R. G., (2002), Formulation of a rip current predictive index using rescue data, Proc. National Conference on beach Preservation Technology, Florida Shore & Beach Preservation Association, January 23-25, 2002, Biloxi, MS.
39. Dusek, G. and Seim, H., (2013a), Rip current intensity estimates from lifeguard observations, Journal of Coastal Research, Vol.29, p.505-518. & (2013b), A probabilistic rip current forecast model, Journal of Coastal Research, Vol.29, p.909-925. [DOI:10.2112/JCOASTRES-D-12-00117.1]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.