1. Bhattacharya, S. (2019). Design of foundations for offshore wind turbines. John Wiley & Sons. [
DOI:10.1002/9781119128137]
2. Qi, W. G., & Gao, F. P. (2019). Local Scour around a Monopile Foundation for Offshore Wind Turbines and Scour Effects on Structural Responses. In Geotechnical Engineering-Advances in Soil Mechanics and Foundation Engineering. IntechOpen [
DOI:10.5772/intechopen.88591]
3. Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy conversion and management, 158, 103-119. [
DOI:10.1016/j.enconman.2017.12.061]
4. EWEA (2016). The european offshore wind industry - key trends and statistics 2015. Technical report, EWEA.
5. Carder, D. R. and Brookes, N. J. (1993). Discussion. In Retaining structures (ed. C. R. I.Clayton), pp. 498-501. London: Thomas Telford.
6. Carder, D. R., Watson, G. V. R., Chandler, R. J., & Powrie, W. (1999). Long-term performance of an embedded retaining wall with a stabilizing base slab. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 137(2), 63-74. [
DOI:10.1680/gt.1999.370201]
7. Powrie, W., & Daly, M. P. (2007). Centrifuge modelling of embedded retaining walls with stabilising bases. Geotechnique, 57(6), 485-497. [
DOI:10.1680/geot.2007.57.6.485]
8. Poulos, H. G., & Randolph, M. F. (1983). Pile group analysis: a study of two methods. Journal of Geotechnical Engineering, 109(3), 355-372. [
DOI:10.1061/(ASCE)0733-9410(1983)109:3(355)]
9. Kim, J. B., & Singh, L. P. (1974). EFFECT OF PILE CAP-SOIL INTERACTION ON LATERAL CAPACITY OF (No. Final Rpt.).
10. Mokwa, R. L. (1999). Investigation of the resistance of pile caps to lateral loading (Doctoral dissertation, Virginia Tech).
11. Maharaj, D. K. (2003). Load-deflection response of laterally loaded single pile by nonlinear finite element analysis. Electronic J. Geot. Engrg.
12. Stone, K. J. L., Newson, T. A., El Marassi, M., El Naggar, H., Taylor, R. N., & Goodey, R. J. (2010). An investigation of the use of a bearing plate to enhance the lateral capacity of monopile foundations. In Frontiers in Offshore Geotechnics II (pp. 641-646). CRC Press. [
DOI:10.1201/b10132-88]
13. Arshi, H. S., & Stone, K. J. L. (2011, September). An investigation of a rock socketed pile with an integral bearing plate founded over weak rock. In Proceedings of the 15th European Conference of Soil Mechanics and Geotechnical Engineering (pp. 705-711).
14. Lehane, B. M., Powrie, W., & Doherty, J. P. (2010). Centrifuge model tests on piled footings in clay for offshore wind turbines. In Frontiers in Offshore Geotechnics II (pp. 623-628). CRC Press. [
DOI:10.1201/b10132-85]
15. El-Marassi, M. (2011). Investigation of hybrid monopile-footing foundation systems subjected to combined loading.
16. DNV⋅GL, 2016. DNVGL-ST-0437: Loads and Site Conditions for Wind Turbines. Det Norske Veritas, Oslo, Norway.
17. Gentils, T., Wang, L., & Kolios, A. (2017). Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Applied energy, 199, 187-204 [
DOI:10.1016/j.apenergy.2017.05.009]
18. Han, L. H., & Huo, J. S. (2003). Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard. Journal of Structural Engineering, 129(1), 68-7. [
DOI:10.1061/(ASCE)0733-9445(2003)129:1(68)]
19. Pagoulatou, M., Sheehan, T., Dai, X. H., & Lam, D. (2014). Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Engineering Structures, 72, 102-112. [
DOI:10.1016/j.engstruct.2014.04.039]
20. Maekawa, K., Okamura, H., & Pimanmas, A. (2003). Non-linear mechanics of reinforced concrete. CRC Press. [
DOI:10.1201/9781482288087]
21. Contrafatto, L., & Cuomo, M. (2006). A framework of elastic-plastic damaging model for concrete under multiaxial stress states. International Journal of Plasticity, 22(12), 2272-2300. [
DOI:10.1016/j.ijplas.2006.03.011]
22. Ye, Y., Han, L. H., & Guo, Z. X. (2017). Concrete-filled bimetallic tubes (CFBT) under axial compression: Analytical behaviour. Thin-Walled Structures, 119, 839-850. [
DOI:10.1016/j.tws.2017.08.007]
23. Belarbi, A., & Hsu, T. T. (1994). Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Structural Journal, 91(4), 465-474. [
DOI:10.14359/4154]
24. Zuo, H., Bi, K., & Hao, H. (2018). Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157, 42-62. [
DOI:10.1016/j.engstruct.2017.12.001]
25. Johnson, K., Karunasena, W., Sivakugan, N., & Guazzo, A. (2001). Modeling pile-soil interaction using contact surfaces. In Computational mechanics-New frontiers for the New millennium (pp. 375-380). Elsevier. [
DOI:10.1016/B978-0-08-043981-5.50058-4]
26. Hokmabadi, A. S., Fakher, A., & Fatahi, B. (2012). Full scale lateral behaviour of monopiles in granular marine soils. Marine structures, 29(1), 198-210. [
DOI:10.1016/j.marstruc.2012.06.001]
27. Shirzadeh, R., Devriendt, C., Bidakhvidi, M. A., & Guillaume, P. (2013). Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation. Journal of Wind Engineering and Industrial Aerodynamics, 120, 96-106. [
DOI:10.1016/j.jweia.2013.07.004]
28. Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N. A., Cox, J., Lombardi, D., ... & Nash, D. F. (2013). Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 54, 47-60. [
DOI:10.1016/j.soildyn.2013.07.012]
29. Popovics, Sandor. "A numerical approach to the complete stress-strain curve of concrete." Cement and concrete research 3.5 (1973): 583-599. [
DOI:10.1016/0008-8846(73)90096-3]
30. Golafshani, A. A., Bagheri, V., Ebrahimian, H., & Holmas, T. (2011). Incremental wave analysis and its application to performance-based assessment of jacket platforms. Journal of Constructional Steel Research, 67(10), 1649-1657. [
DOI:10.1016/j.jcsr.2011.04.008]