Write your message
Volume 18, Issue 35 (5-2022)                   Marine Engineering 2022, 18(35): 47-59 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pahlavannejad Tabarestani Y, Naghipour M. Numerical investigation of structural behavior of fixed offshore wind turbines with CFDST sections based on hybrid monopile-footing foundation. Marine Engineering 2022; 18 (35) :47-59
URL: http://marine-eng.ir/article-1-933-en.html
1- Babol Noshirvani University of Technology
Abstract:   (1951 Views)
Offshore wind energy is one of the main sources of renewable energy, which has led to the increasing expansion of offshore wind farms worldwide.One of the major challenges for offshore wind projects is the cost of construction of the foundation, which, depending on the location and type of wind turbine, accounts for about 16 to 34% of the total cost.Therefore, proper design of foundations is very important to ensure the performance of offshore wind turbines.The foundation proposed in this research includes a hybrid monopile-footing foundation in which CFDST sections have been used in monopile instead of conventional steel sections.Dynamic analysis of the foundation under environmental loads has been performed using finite element method by ABAQUS  software. The results show that the use of CFDST sections, in addition to being able to reduce the diameter of the monopile, add a circular footing to the monopile, creates more lateral stiffness for the monopile at mud level and also reduces its lateral displacement.Also, by comparing the natural frequencies of wind turbines based on the proposed foundation, it was found that these structures are within the allowable frequency range and do not pose a risk of resonance.
Full-Text [PDF 2405 kb]   (788 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2021/10/4 | Accepted: 2022/04/6

References
1. Bhattacharya, S. (2019). Design of foundations for offshore wind turbines. John Wiley & Sons. [DOI:10.1002/9781119128137]
2. Qi, W. G., & Gao, F. P. (2019). Local Scour around a Monopile Foundation for Offshore Wind Turbines and Scour Effects on Structural Responses. In Geotechnical Engineering-Advances in Soil Mechanics and Foundation Engineering. IntechOpen [DOI:10.5772/intechopen.88591]
3. Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy conversion and management, 158, 103-119. [DOI:10.1016/j.enconman.2017.12.061]
4. EWEA (2016). The european offshore wind industry - key trends and statistics 2015. Technical report, EWEA.
5. Carder, D. R. and Brookes, N. J. (1993). Discussion. In Retaining structures (ed. C. R. I.Clayton), pp. 498-501. London: Thomas Telford.
6. Carder, D. R., Watson, G. V. R., Chandler, R. J., & Powrie, W. (1999). Long-term performance of an embedded retaining wall with a stabilizing base slab. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 137(2), 63-74. [DOI:10.1680/gt.1999.370201]
7. Powrie, W., & Daly, M. P. (2007). Centrifuge modelling of embedded retaining walls with stabilising bases. Geotechnique, 57(6), 485-497. [DOI:10.1680/geot.2007.57.6.485]
8. Poulos, H. G., & Randolph, M. F. (1983). Pile group analysis: a study of two methods. Journal of Geotechnical Engineering, 109(3), 355-372. [DOI:10.1061/(ASCE)0733-9410(1983)109:3(355)]
9. Kim, J. B., & Singh, L. P. (1974). EFFECT OF PILE CAP-SOIL INTERACTION ON LATERAL CAPACITY OF (No. Final Rpt.).
10. Mokwa, R. L. (1999). Investigation of the resistance of pile caps to lateral loading (Doctoral dissertation, Virginia Tech).
11. Maharaj, D. K. (2003). Load-deflection response of laterally loaded single pile by nonlinear finite element analysis. Electronic J. Geot. Engrg.
12. Stone, K. J. L., Newson, T. A., El Marassi, M., El Naggar, H., Taylor, R. N., & Goodey, R. J. (2010). An investigation of the use of a bearing plate to enhance the lateral capacity of monopile foundations. In Frontiers in Offshore Geotechnics II (pp. 641-646). CRC Press. [DOI:10.1201/b10132-88]
13. Arshi, H. S., & Stone, K. J. L. (2011, September). An investigation of a rock socketed pile with an integral bearing plate founded over weak rock. In Proceedings of the 15th European Conference of Soil Mechanics and Geotechnical Engineering (pp. 705-711).
14. Lehane, B. M., Powrie, W., & Doherty, J. P. (2010). Centrifuge model tests on piled footings in clay for offshore wind turbines. In Frontiers in Offshore Geotechnics II (pp. 623-628). CRC Press. [DOI:10.1201/b10132-85]
15. El-Marassi, M. (2011). Investigation of hybrid monopile-footing foundation systems subjected to combined loading.
16. DNV⋅GL, 2016. DNVGL-ST-0437: Loads and Site Conditions for Wind Turbines. Det Norske Veritas, Oslo, Norway.
17. Gentils, T., Wang, L., & Kolios, A. (2017). Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Applied energy, 199, 187-204 [DOI:10.1016/j.apenergy.2017.05.009]
18. Han, L. H., & Huo, J. S. (2003). Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard. Journal of Structural Engineering, 129(1), 68-7. [DOI:10.1061/(ASCE)0733-9445(2003)129:1(68)]
19. Pagoulatou, M., Sheehan, T., Dai, X. H., & Lam, D. (2014). Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Engineering Structures, 72, 102-112. [DOI:10.1016/j.engstruct.2014.04.039]
20. Maekawa, K., Okamura, H., & Pimanmas, A. (2003). Non-linear mechanics of reinforced concrete. CRC Press. [DOI:10.1201/9781482288087]
21. Contrafatto, L., & Cuomo, M. (2006). A framework of elastic-plastic damaging model for concrete under multiaxial stress states. International Journal of Plasticity, 22(12), 2272-2300. [DOI:10.1016/j.ijplas.2006.03.011]
22. Ye, Y., Han, L. H., & Guo, Z. X. (2017). Concrete-filled bimetallic tubes (CFBT) under axial compression: Analytical behaviour. Thin-Walled Structures, 119, 839-850. [DOI:10.1016/j.tws.2017.08.007]
23. Belarbi, A., & Hsu, T. T. (1994). Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Structural Journal, 91(4), 465-474. [DOI:10.14359/4154]
24. Zuo, H., Bi, K., & Hao, H. (2018). Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157, 42-62. [DOI:10.1016/j.engstruct.2017.12.001]
25. Johnson, K., Karunasena, W., Sivakugan, N., & Guazzo, A. (2001). Modeling pile-soil interaction using contact surfaces. In Computational mechanics-New frontiers for the New millennium (pp. 375-380). Elsevier. [DOI:10.1016/B978-0-08-043981-5.50058-4]
26. Hokmabadi, A. S., Fakher, A., & Fatahi, B. (2012). Full scale lateral behaviour of monopiles in granular marine soils. Marine structures, 29(1), 198-210. [DOI:10.1016/j.marstruc.2012.06.001]
27. Shirzadeh, R., Devriendt, C., Bidakhvidi, M. A., & Guillaume, P. (2013). Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation. Journal of Wind Engineering and Industrial Aerodynamics, 120, 96-106. [DOI:10.1016/j.jweia.2013.07.004]
28. Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N. A., Cox, J., Lombardi, D., ... & Nash, D. F. (2013). Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 54, 47-60. [DOI:10.1016/j.soildyn.2013.07.012]
29. Popovics, Sandor. "A numerical approach to the complete stress-strain curve of concrete." Cement and concrete research 3.5 (1973): 583-599. [DOI:10.1016/0008-8846(73)90096-3]
30. Golafshani, A. A., Bagheri, V., Ebrahimian, H., & Holmas, T. (2011). Incremental wave analysis and its application to performance-based assessment of jacket platforms. Journal of Constructional Steel Research, 67(10), 1649-1657. [DOI:10.1016/j.jcsr.2011.04.008]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.