1. Curtis, T., 2001. The design, construction, outfitting, and preliminary testing of the C-SCOUT autonomous underwater vehicle (AUV) (Doctoral dissertation, Memorial University of Newfoundland).
2. Myring, D.F., 1981. A theoretical study of the effects of body shape and Mach number on the drag of bodies of revolution in subcritical axisymmetric flow (No. RAE-TR-81005). ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (UNITED KINGDOM).
3. Mackay, M. and Defence, R., 2003. The standard submarine model: a survey of static hydrodynamic experiments and semiempirical predictions. Defence R&D Canada-Atlantic.
4. Jackson, H.A., 1992. Fundamentals of submarine concept design.
5. Groves, N.C., Huang, T.T. and Chang, M.S., 1989. Geometric characteristics of DARPA suboff models :( DTRC Model Nos. 5470 and 5471). David Taylor Research Center.
6. Desa, E., Madhan, R., Maurya, P., Navelkar, G., Mascarenhas, A.A.M.Q., Prabhudesai, S., Afzulpurkar, S. and Bandodkar, S.N., 2007. The small Maya AUV-Initial field results.
7. Błachut, J. and Smith, P., 2008. Buckling of multi-segment underwater pressure hull. Ocean Engineering, 35(2), pp.247-260. [
DOI:10.1016/j.oceaneng.2007.08.003]
8. de Freitas, A.S.N. and de Barros, E.A., MECHANICAL DESIGN OF AN EXTERNAL PRESSURE VESSEL OF AN AUV.
9. Prestero, T.T.J., 2001. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle (Doctoral dissertation, Massachusetts institute of technology). [
DOI:10.1575/1912/3040]
10. Idrees, Q., Liangtian, G., Bo, L. and Yiran, M., 2018. Study on Optimization Design of Pressure Hull for Underwater Vehicle. International Journal of Transport and Vehicle Engineering, 12(3), pp.268-273.
11. Eng, Y.H., Chin, C.S. and Lau, M.W.S., 2014. Added mass computation for control of an open-frame remotely operated vehicle: Application using WAMIT and MATLAB. Journal of Marine Science and Technology, 22(4), pp.405-416.
12. Moonesun, M., Mahdian, A., Korol, Y.M., Dadkhah, M., Javadi, M.M. and Brazhko, A., 2016. Optimum L/D for submarine shape.
13. Zhang, Y., Stansby, P. and Li, G., 2020. Non-causal linear optimal control with adaptive sliding mode observer for multi-body wave energy converters. IEEE Transactions on Sustainable Energy. [
DOI:10.1109/TSTE.2020.3012412]
14. Vervoort, J.H.A.M., 2009. Modeling and control of an unmanned underwater vehicle. Master Traineesh. Rep, pp.5-15.
15. Carlton, J., 2018. Marine propellers and propulsion. Butterworth-Heinemann. [
DOI:10.1016/B978-0-08-100366-4.00012-2]
16. Allotta, B., Pugi, L., Bartolini, F., Ridolfi, A., Costanzi, R., Monni, N. and Gelli, J., 2015. Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 229(3), pp.248-272. [
DOI:10.1177/1475090213514040]
17. Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons. [
DOI:10.1002/9781119994138]
18. EDWARD M. LEWANDOWSKI, The Dynamics Of Marine Craft, Manoeuvring and Seakeeping, World Scientific, Vol 22, 2004, pp. 35-54. [
DOI:10.1142/4815]
19. Hasanvand, A. and Hajivand, A., 2019. Investigating the effect of rudder profile on 6DOF ship turning performance. Applied Ocean Research, 92, p.101918. [
DOI:10.1016/j.apor.2019.101918]
20. J. Yuh. Modeling and control of underwater robot vehicles. In IEEE Transactions on Systems, Man and Cybernetics, volume 20, pages 1475-1483, 1990. [
DOI:10.1109/21.61218]
21. Renilson, M., 2015. Submarine hydrodynamics (pp. 45-89). New York: Springer. [
DOI:10.1007/978-3-319-16184-6]