Write your message
Volume 15, Issue 29 (4-2019)                   Marine Engineering 2019, 15(29): 167-179 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gandomi M, Dolatshahi Pirooz M, Varjavand I, Nikoo M R. Application of Multilayer Perceptron Neural Network and Support Vector Machine for Modeling the Hydrodynamic Behavior of Permeable Breakwaters with Porous Core. Marine Engineering 2019; 15 (29) :167-179
URL: http://marine-eng.ir/article-1-734-en.html
1- University of Tehran
2- Shiraz University
Abstract:   (3926 Views)
In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the width of the breakwater chamber, the ratio of the height of rockfill material to the water depth, the ratio of the width of the chamber to the wavelength, Wave number in water depth and wave steepness. The results indicate that the MPL model has better performance in modeling the hydrodynamic behavior than the SVM model and is largely correlated to real data (R = 0.8689 for reflection coefficient and 0.96629 R = for transient coefficient). In order to reveal the response of reflection and transition coefficients to each input parameter, a parametric study was performed. Also, using the sensitivity analysis, the participation rate of each input parameters in the prediction of reflection and transient coefficients has been studied.
Full-Text [PDF 1357 kb]   (2903 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2019/06/1 | Accepted: 2019/07/14

References
1. Fugazza, M., & Natale, L., (1992), Hydraulic design of perforated breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(1), 1-14. [DOI:10.1061/(ASCE)0733-950X(1992)118:1(1)]
2. Chen, X., Li, Y., & Sun, D., (2002), Regular waves acting on double-layered perforated caissons. In The Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
3. Twu, S. W., & Lin, D. T., (1991), On a highly effective wave absorber. Coastal Engineering, 15(4), 389-405. [DOI:10.1016/0378-3839(91)90018-C]
4. Isaacson, M., Baldwin, J., Allyn, N., & Cowdell, S., (2000), Wave interactions with perforated breakwater. Journal of waterway, port, coastal, and ocean engineering, 126(5), 229-235. [DOI:10.1061/(ASCE)0733-950X(2000)126:5(229)]
5. Liu, Y., & Li, Y., (2006), Wave interaction with a modified Jarlan-type perforated breakwater. In The Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium. International Society of Offshore and Polar Engineers
6. Mani, J. S., & Jayakumar, S., (1995), Wave transmission by suspended pipe breakwater. Journal of waterway, port, coastal, and ocean engineering, 121(6), 335-338. [DOI:10.1061/(ASCE)0733-950X(1995)121:6(335)]
7. Chiang, C. M., (1983), The applied dynamics of ocean surface waves.
8. Gardner, J. D., Townend, I. H., & Fleming, C. A., (1987), The design of a slotted vertical screen breakwater. In Coastal Engineering 1986 (pp. 1881-1893). [DOI:10.1061/9780872626003.138]
9. Hutchinson, P. S., & Raudkivi, A. J., (1985), Case History of a Spaced Pile Breakwater at Half Moon Bay Marina Auckland, New Zealand. In Coastal Engineering 1984 (pp. 2530-2535). [DOI:10.1061/9780872624382.170]
10. Mei, C. C., Liu, P. L., & Ippen, A. T., (1974), Quadratic loss and scattering of long waves. Journal of Waterways, Harbors & Coast EngDiv, 100(ASCE Paper# 10754).
11. Isaacson, M., Premasiri, S., & Yang, G., (1998), Wave interactions with vertical slotted barrier. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(3), 118-126. [DOI:10.1061/(ASCE)0733-950X(1998)124:3(118)]
12. Huang, Z., (2007), An experimental study of wave scattering by a vertical slotted barrier in the presence of a current. Ocean Engineering, 34(5), 717-723. [DOI:10.1016/j.oceaneng.2006.05.007]
13. Alavi, A.H., Gandomi, A.H., (2011), Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computers and Structures 89 (23e24), 2176e2194. [DOI:10.1016/j.compstruc.2011.08.019]
14. Yaghouby, F., Ayatollahi, A., Yaghouby, M., (2010a). An arrhythmia classification method based on selected features of heart rate variability signal and support vector machine-based classifier. In: IFMBE Proceeding, vol. 25/4. Springer SCI, pp. 1928e1931. [DOI:10.1007/978-3-642-03882-2_512]
15. Deo, M.C., (2010), Artificial neural networks in coastal and ocean engineering. Indian Journal of Marine Science 39 (4), 589-596.
16. Van Gent, M.R.A., van den Boogaard, H.F.P., Pozueta, B., Medina, J.R., (2007), Neural network modelling of wave overtopping at coastal structures. Coastal Engineering 54,586-593. [DOI:10.1016/j.coastaleng.2006.12.001]
17. Verhaeghe, H., (2005), Neural network prediction of wave overtopping at coastal structures PhD thesis. Universite it Gent, Gent, BE.
18. CLASH, (2004), Crest Level Assessment of coastal Structures by full scale monitoring, neural network prediction and Hazard analysis on permissible wave overtopping.EC-contract EVK3-CT-2001-00058. 〈www.clash-eu.org〉
19. Formentin, S., Zanuttigh, B., & van der Meer, J., (2017), The New EurOtop Neural Network Tool for an Improved Prediction of Wave Overtopping. Proc. of ICE Coasts, Marine Structures and Breakwaters. [DOI:10.9753/icce.v35.waves.2]
20. Garrido, J.M., Medina, J.R., (2012), New neural network-derived empirical formulas for estimating wave reflection on Jarlan-type breakwaters. Coast.Eng.62, p. 9-18. [DOI:10.1016/j.coastaleng.2011.12.003]
21. Zanuttigh, B., Formentin, S. M., & van der Meer, J. W., (2016), Prediction of extreme and tolerable wave overtopping discharges through an advanced neural network. Ocean Engineering, 127, 7-22. [DOI:10.1016/j.oceaneng.2016.09.032]
22. Vapnik, V., (1998), Statistical learning theory. Wiley, New York.
23. Mahjoobi, J. and Mosabbeb, E.A., (2009), Prediction of significant wave height using regressive support vector machines. J.Ocean Engineering, 36(5), pp.339-347. [DOI:10.1016/j.oceaneng.2009.01.001]
24. Kim, D.K., Kim, D.H., Chang, S.K., Lee, J.J. and Lee, D.H., (2010), Stability Number Prediction for Breakwater Armor Blocks USing Support Vector Regression. KSCE Journal of Civil Engineering, 15(2), pp.225-230. [DOI:10.1007/s12205-011-1031-1]
25. Perlovsky, L.I., (2001), Neural Networks and Intellect. Oxford University Press.
26. Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A., (2010), Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. Journal of Plant Nutrition and Soil Science 173 (3), 368e379. [DOI:10.1002/jpln.200800233]
27. Boser, B. E., Guyon, I. M., and Vapnik, V. N., (1992), A training algorithm for optimal margin classifiers. Proceedings 5th Annual ACM Workshop on COLT, Pittsburgh, PA, 144-152. [DOI:10.1145/130385.130401]
28. Cortes, C., and Vapnik, V. N., (1995), Support vector networks. Machine Learning, 20, 273-297. [DOI:10.1007/BF00994018]
29. Smola, A. J., and Scholkopf, B., (2004), A tutorial on support vector regression. Statistics and Computing, 14, 199-222. [DOI:10.1023/B:STCO.0000035301.49549.88]
30. Ahmed, H., Schlenkhoff, A., & Oertel, M., (2013), Stokes second-order wave interaction with vertical slotted wall breakwater. In Coastal Structures 2011: (In 2 Volumes) (pp. 691-703). [DOI:10.1142/9789814412216_0060]
31. Elbisy, M. S., Mlybari, E. M., & Helal, M. M., (2016), Hydrodynamic performance of multiple-row slotted breakwaters. Journal of Marine Science and Application, 15(2), 123-135. [DOI:10.1007/s11804-016-1358-6]
32. Frank, I.E., Todeschini, R., (1994), The Data Analysis Handbook. Elsevier, Amsterdam.
33. Gandomi, A.H., Alavi, A.H., (2011), Applications of computational intelligence in behavior simulation of concrete materials. (Chapter 9). In: Yang, X.S., Koziel, S. (Eds.), Computational Optimization and Applications in Engineering and Industry, vol. 359. Springer SCI, pp. 221e243. [DOI:10.1007/978-3-642-20986-4_9]
34. Cybenko, J., (1989), Approximations by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems 2, 303e314. [DOI:10.1007/BF02551274]
35. KIRCA, V. Ö., & KABDAŞLI, M. S., (2009), Reduction of non-breaking wave loads on caisson type breakwaters using a modified perforated configuration. Ocean Engineering, 36(17), 1316-1331. [DOI:10.1016/j.oceaneng.2009.09.003]
36. Ou‐Yang, H.T., Huang, L.H., Hwang, W.S., (1997), The interference of a semi‐submerged obstacle on the porous breakwater. Applied Ocean Research. 19: p. 263‐273. [DOI:10.1016/S0141-1187(97)00035-7]
37. Zhu, S., Chwang, A.T., (2001), Investigation on the reflection behavior of a slotted wall. Coastal Engineering, 43: p. 93‐104. [DOI:10.1016/S0378-3839(01)00008-4]
38. Tanimoto, K., Yoshimoto, Y., (1982), Theoretical and experimental study of reflection coefficient for wave dissipating caisson with a permeable front wall. Report of the Port and Harbour Research Institute, 21(3): p. 44‐77 (in Japanese with English abstract).
39. Liu, Y., Li, Y.C., Teng, B., (2007), Wave interaction with a new type perforated breakwater. Acta Mechanica Sinica, 23: p. 351‐358. [DOI:10.1007/s10409-007-0086-1]
40. Chegini, V., (1994). Design of Upright Perforated Energy Dissipators for Use in Wave Basins. University of New South Wales.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.