Write your message
Volume 15, Issue 30 (1-2020)                   Marine Engineering 2020, 15(30): 131-138 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahreinimotlagh M, Roozbahani R, Eftekhari M, Kardanmoghadam H, Khoshhali M, Mohtasham K. Feasibility study of 10-kHz Coastal Acoustic Tomography System for current monitoring in the Persian Gulf. Marine Engineering 2020; 15 (30) :131-138
URL: http://marine-eng.ir/article-1-732-en.html
1- Water Research Institute
2- K. N. Toosi University of Technology
3- Sanjab Fanavari Khalije Fars Ltd
Abstract:   (4164 Views)
Acoustic Tomography (AT) technique is widely used in developed countries for water resources monitoring of the oceans, seas, and rivers. The 10-kHz Coastal Acoustic Tomography System (CATS) is previously applied to monitor coastal seas in the scale of kilometers. In this study, we evaluated the capability of the 10-kHz CAT system. The equation of sound propagation in water was developed to introduce a new equation to estimate the maximum operational range of 10-kHz CAT system. The results showed that with the assumption of clear seawater, the minimum and maximum operational ranges are 57 and 18000 m, respectively. Moreover, the velocity resolution is better than 0.1 cm/s in the range of greater than 7000 m. Choosing a suitable M Sequence due to the distances between acoustic stations is another point of operation to have the best performance. It is suggested that scientists apply this technique to monitor the Persian Gulf currents.
Full-Text [PDF 667 kb]   (1612 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2019/05/20 | Accepted: 2019/11/29

References
1. 1- Bahreinimotlagh, M., Roozbahani, R., Eftekhari, M., Heydari, A. K. and Abolhosseini, S., (2019), Investigation of Current Status in Haftbarm Lake Using Acoustic Tomography Technology, Journal of Water and Soil, Vol. 33, p.[In Persian].
2. Bahreinimotlagh, M., Roozbahani, R., Farokhnia, A., Soltaniasl, M. and Mohtasham, M., (2019), Technical Note: Acoustic Tomography Technology; a Useful Tool for Continuous Monitoring of Flow Velocity and Temperature, Iran-Water Resources Research, Vol. 14, p.271-275, [In Persian].
3. Bahreinimotlagh, M., Roozbahani, R., Eftekhari, M., Zareian, M. J. and Farokhnia, A., (2019), Evaluation of underwater acoustic propagation model (Ray theory) in a river using Fluvial Acoustic Tomography System, Journal of Acoustical Engineering Society of Iran, Vol. 6, p.29-38, [In Persian].
4. Baggeroer, A. and Munk, W., (1992), The Heard Island Feasibility Test, Physics Today, Vol. 45, p.22-30. [DOI:10.1063/1.881317]
5. Taniguchi, N., Kaneko, A., Yuan, Y., Gohda, N., Chen, H., Liao, G., Yang, C., Minamidate, M., Adityawarman, Y., Zhu, X. and Lin, J., (2010), Long-term acoustic tomography measurement of ocean currents at the northern part of the Luzon Strait, Geophysical Research Letters, Vol. 37,. [DOI:10.1029/2009GL042327]
6. Chen, M., Syamsudin, F., Kaneko, A., Gohda, N., Howe, B. M., Mutsuda, H., Dinan, A. H., Zheng, H., Huang, C.-F., Taniguchi, N., Zhu, X., Adityawarman, Y., Zhang, C. and Lin, J., (2018), Real-Time Offshore Coastal Acoustic Tomography Enabled With Mirror-Transpond Functionality, IEEE Journal of Oceanic Engineering, p.1-11. [DOI:10.1109/JOE.2018.2878260]
7. Syamsudin, F., Chen, M., Kaneko, A., Adityawarman, Y., Zheng, H., Mutsuda, H., Hanifa, A. D., Zhang, C., Auger, G., Wells, J. C. and Zhu, X., (2017), Profiling measurement of internal tides in Bali Strait by reciprocal sound transmission, Acoustical Science and Technology, Vol. 38, p.246-253. [DOI:10.1250/ast.38.246]
8. Al Sawaf, M. B., Kawanisi, K., Kagami, J., Bahreinimotlagh, M. and Danial, M. M., (2017), Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system, Physica A: Statistical Mechanics and its Applications, Vol. 484, p.11-20. [DOI:10.1016/j.physa.2017.04.168]
9. Bahreinimotlagh, M., Kawanisi, K., Danial, M. M., Al Sawaf, M. B. and Kagami, J., (2016), Application of shallow-water acoustic tomography to measure flow direction and river discharge, Flow Measurement and Instrumentation, Vol. 51, p.30-39. [DOI:10.1016/j.flowmeasinst.2016.08.010]
10. Bahreinimotlagh, M., Kawanisi, K., Sawaf, M. ., Roozbahani, R., Eftekhari, M. and Kazemi Khoshuie, A., (2019), Continuous Streamflow Monitoring in Shared Watersheds Using Advanced Underwater Acoustic Tomography System: A Case Study on Zayanderud River. Environmental Monitoring Assessment. [DOI:10.1007/s10661-019-7830-4]
11. Munk, W. and Wunsch, C., (1979), Ocean Acoustic Tomography: A Scheme for Large Scale Monitoring, Deep Sea Research Part A. Oceanographic Research Papers, Vol. 26, p.123-161. [DOI:10.1016/0198-0149(79)90073-6]
12. Howe, B. M., Worcester, P. F. and Spindel, R. C., (1987), Ocean acoustic tomography: Mesoscale velocity, Journal of Geophysical Research: Oceans, Vol. 92, p.3785-3805. [DOI:10.1029/JC092iC04p03785]
13. Yun Shen, Zhang, C., Huang, L., Zhang, C., Wu, Y., Wu, G., Sheng, C., Guo, Y., Wang, Z., Liu, X. and Huang, H., Flow Velocity and Temperature Measuring in Large- Scale Wave-Current Flume by Coastal Acoustic Tomography, OCEANS 2018 MTS/IEEE, 2018, Charleston, SC, USA. [DOI:10.1109/OCEANS.2018.8604626]
14. Zheng, H., Noriaki, G., NOGUCHI, H., Ito, T., Yamaoka, H., Tamura, T., Takasugi, Y. and Kaneko, A., (1997), Reciprocal Sound Transmission Experiment for Current Measurement in the Seto Inland Sea , Japan, Journal of Oceanography, Vol. 53, p.117-127.
15. Zheng, H., Yamaoka, H., Gohda, N., NOGUCHI, H. and Kaneko, A. ;, (1998), Design of the acoustic tomography system for velocity measurement with an application to the coastal sea, J. Acoust. Soc. Jpn. (E), Vol. 19, p.199-210. [DOI:10.1250/ast.19.199]
16. Lin, J., Kaneko, A., Gohda, N. and Yamaguchi, K., (2005), Accurate imaging and prediction of Kanmon Strait tidal current structures by the coastal acoustic tomography data, Geophysical Research Letters, Vol. 32, p.1-4. [DOI:10.1029/2005GL022914]
17. Liao, G., Wang, J., Xu, X., Yang, C., Wu, Q., Zhang, C. and Zhu, X., A Coastal Acoustic Tomography Inverse Method Based on Chebyshev Polynomials and Its Application in Zhoushan Field Experiment.
18. Zhang, C., Kaneko, A. ;, Xiao-Hua Zhu; and Gohda, N., (2015), Tomographicmapping of a coastal upwelling and the associated diurnal internal tides in Hiroshima Bay, Japan Chuanzheng, Journal of Geophysical Research: Oceans Research, p.1152-1172.
19. Huang, C.-F., Taniguchi, N., Chen, Y.-H. and Liu, J.-Y., (2016), Estimating temperature and current using a pair of transceivers in a harbor environment, Journal of Acoustical Society of America, Vol. 140, p.EL137-EL142. [DOI:10.1121/1.4959069]
20. Bahreinimotlagh, M., Roozbahani, R., Eftekhari, M., Kardanmoghadam, H. and Kavousi, A., (2018), Design, Manufacture and the Evaluation of Fluvial Acoustic Tomography System (FATS), Journal of Acoustical Engineering Society of Iran, Vol. 6, p.1-11 [In Persian].
21. Bahreinimotlagh, M., Roozbahani, R., Eftekhari, M., Kardanmoghadam, H., Abbasi, M. and Mohtasham, K., (2019), Feasibility study of Fluvial Acoustic Tomography System for flood monitoring and determination of the measurement accuracy, minimum and maximum measurement ranges, Iranian Journal of Echo Hydrology, Vol. 6, p.585-592 [In Persian].
22. Urick, R. J., (1983). Principles of underwater sound, Peninsula Pub, New York.
23. Yamaguchi, K., Lin, J., Kaneko, A., Yayamoto, T., Gohda, N., Nguyen, H. Q. and Zheng, H., (2005), A continuous mapping of tidal current structures in the kanmon strait, Journal of Oceanography, Vol. 61, p.283-294. [DOI:10.1007/s10872-005-0038-y]
24. Bahreinimotlagh, M., Roozbahani, R., Eftakhari, M., Kardan Moghaddam, H. and Hassanli, S. A., (2019), Continuous Monitoring of Tidal Bores Using Acoustic Tomography Technique, Journal of Oceanography, Vol. 9, p.57-64 [in Persian].

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.