1. Lang, T., (1975), Speed, power, and drag measurements of dolphins and porpoises, in Swimming and flying in nature, p 552-573 [
DOI:10.1007/978-1-4757-1326-8_5]
2. Fish, F.E. and Rohr, J., (1999), Review of dolphin hydrodynamics and swimming performance, Space and naval warfare systems commandSan Diego CA. [
DOI:10.21236/ADA369158]
3. Fish, F.E., (1993), Power output and propulsive efficiency of swimming bottlenose dolphins Tursiops truncatus, Journal of Experimental Biology, vol. 185, p. 179-193.
4. Fish, F.E., Legac.P., Williams, T.M. and Wei, T., (2014), Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV, Journal of Experimental Biology, Vol. 217, P. 252-260. [
DOI:10.1242/jeb.087924]
5. Yu, J. Su, Z. Wang, M. Tan, M. and Zhang, J., (2012), Control of yaw and pitch maneuvers of a multilink dolphin robot, IEEE Transactions on robotics, Vol. 28, P. 318-329. [
DOI:10.1109/TRO.2011.2171095]
6. Shen, F., Cao, Z., Zhou, C., Xu,D. and Gu, N. (2013) Depth control for robotic dolphin based on fuzzy PID control, International Journal of Offshore and Polar Engineering, Vol. 23.
7. Wang, M., Yu, J., Tan, M., Wang, H. and Li, C. (2014), CPG-based multi-modal swimming control for robotic dolphin, Acta Automation Sinica, Vol. 40, pp.1933-1941.
8. Wu, Z., Yu, J., Yuan, J. and Tan, M. (2019), Towards a Gliding Robotic Dolphin: Design, Modeling, and Experiments, IEEE/ASME Transactions on Mechatronics. [
DOI:10.1109/TMECH.2019.2891290]
9. Nakashima, M., Tsubaki, T. and Ono, K., (2006), Three-dimensional movement in water of the dolphin robot-control between two positions by roll and pitch combination, Journal of robotics and mechatronics, Vol. 18, P. 347. [
DOI:10.20965/jrm.2006.p0347]
10. Li, K., Yu, J., Wu, Z. and Tan, M., (2016), Hydrodynamic analysis of a gliding robotic dolphin based on Computational Fluid Dynamics, In Control Conference (CCC).35.2016 Chinese, P.6008-6013. [
DOI:10.1109/ChiCC.2016.7554301]
11. Mohammadshahi, D., Yousefi-Koma, A., Bahmanyar, S. and Maleki, H., (2008), Design, fabrication and hydrodynamic analysis of a biomimetic robot fish, In WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering.
12. Zhou, H., Hu, T., Low, K.H., Shen, L., Ma, Z., Wang, G. et al., (2015), Bio-inspired flow sensing and prediction for fish-like undulating locomotion: A CFD-aided approach, Journal of Bionic Engineering, Vol. 12, P.406-417. [
DOI:10.1016/S1672-6529(14)60132-3]
13. Li, R., Chen, J., Huang, Y., Liu, L. and Wang, X., (2018), Numerical Simulation of Hydrodynamic Performance of Dolphin Fluke Motion, In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, P.V07BT06A029-V07BT06A029.
14. Adkins, D., and Yan, Y., (2006), CFD simulation of fish-like body moving in viscous liquid, Journal of Bionic Engineering, Vol.3, P.147-153. [
DOI:10.1016/S1672-6529(06)60018-8]
15. Shao, J., Wang, L. and Yu, J., (2008), Development of an artificial fish-like robot and its application in cooperative transportation, Control Engineering Practice, Vol. 16, P. 569-584. [
DOI:10.1016/j.conengprac.2007.06.005]
16. Romanenko, E.V.E., (2002), Fish and dolphin swimming: Pensoft Publishers.
17. Riedeberger, D., and Rist, U., (2012), Numerical simulation of laminar-turbulent transition on a dolphin using the γ-Re θ model, In High Performance Computing in Science and Engineering, Vol.11, P. 379-391. [
DOI:10.1007/978-3-642-23869-7_28]