Write your message
Volume 15, Issue 29 (4-2019)                   Marine Engineering 2019, 15(29): 1-9 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hashemi M, naderi A. Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy. Marine Engineering 2019; 15 (29) :1-9
URL: http://marine-eng.ir/article-1-678-en.html
1- ihu
Abstract:   (4355 Views)
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use of redundant IMUs despite single unit is an approach for precision and reliability incensement. In this paper three units IMU is placed in rotational table. The mean of three units IMU is considered as virtual IMU, then INS mechanization is solved after rotation compensation. Experimental results show that the position estimation error without rotation is 10 times of estimation error in rotary case. Attitude estimation is stable in rotatory case despite instability in conventional case.
Full-Text [PDF 1204 kb]   (3254 Downloads)    
Type of Study: Research Paper | Subject: Main Engine & Electrical Equipments
Received: 2018/07/14 | Accepted: 2019/04/20

References
1. Du, S.,Sun, W. and Gao, Y. (2016), MEMS IMU error mitigation using rotation modulation technique. Sensors, Vol.16, p.2017. [DOI:10.3390/s16122017]
2. Song, N.,Cai, Q.,Yang, G. and Yin, H. (2013), Analysis and calibration of the mounting errors between inertial measurement unit and turntable in dual-axis rotational inertial navigation system. Measurement Science and Technology, Vol.24, p.115002. [DOI:10.1088/0957-0233/24/11/115002]
3. Sun, W.,Wang, D.,Xu, L. and Xu, L. (2013), MEMS-based rotary strapdown inertial navigation system. Measurement, Vol.46, p.2585-2596. [DOI:10.1016/j.measurement.2013.04.035]
4. Wang, L.,Wang, W.,Zhang, Q. and Gao, P. (2014), Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, Vol.53, p.064103. [DOI:10.1117/1.OE.53.6.064103]
5. Wang, X.,Wu, J.,Xu, T. and Wang, W. (2013), Analysis and verification of rotation modulation effects on inertial navigation system based on MEMS sensors. The Journal of Navigation, Vol.66, p.751-772. [DOI:10.1017/S0373463313000246]
6. Yuan, B.,Liao, D. and Han, S. (2012), Error compensation of an optical gyro INS by multi-axis rotation. Measurement Science and Technology, Vol.23, p.025102. [DOI:10.1088/0957-0233/23/2/025102]
7. Allerton, D. J. and Jia, H. (2005), A review of multisensor fusion methodologies for aircraft navigation systems. The Journal of Navigation, Vol.58, p.405-417. [DOI:10.1017/S0373463305003383]
8. Guerrier, S. (2009). Improving accuracy with multiple sensors: Study of redundant MEMS-IMU/GPS configurations. Paper presented at the Proceedings of the 22nd international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009).
9. Jafari, M. (2015), Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system. Aerospace Science and Technology, Vol.47, p.467-472. [DOI:10.1016/j.ast.2015.09.017]
10. Chen, G.,Li, K.,Wang, W. and Li, P. (2016), A novel redundant INS based on triple rotary inertial measurement units. Measurement Science and Technology, Vol.27, p.105102. [DOI:10.1088/0957-0233/27/10/105102]
11. Titterton, D. and Weston, J. L. (2004). Strapdown inertial navigation technology (Vol. 17): IET. [DOI:10.1049/PBRA017E]
12. H.K., L.,J.G., L.,Y.K., R. and C.G., P. (1998), Modeling quaternion errors in SDINS: computer frame approach. IEEE Transactions on Aerospace and Electronic Systems, Vol.34, p.289-297. [DOI:10.1109/7.640286]
13. Friedland, B. (1978), Analysis strapdown navigation using quaternions. IEEE Transactions on Aerospace and Electronic Systems AES, Vol.14, p.764-768. [DOI:10.1109/TAES.1978.308627]
14. S, V. (1986), Optimal control of quaternion propagation in spacecraft navigation. Journal of Guidance, Control and Dynamics, Vol.9, p.382-384. [DOI:10.2514/3.20120]
15. Alvarez, H. D. E. (2010). Geometrical Configuration Comparison Of Redundant Inertial Measurement Units. (master), TEXAS AT AUSTIN.
16. Ben, Y.-y.,Chai, Y.-l.,Gao, W. and Sun, F. (2010), Analysis of error for a rotating strap-down inertial navigation system with fibro gyro. Journal of Marine Science and Application, Vol.9, p.419-424. [DOI:10.1007/s11804-010-1028-z]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.