1. Xu, H., Wang, C., Wei, Y. and Cao, W., (2023), On the nonlinear hydrodynamic characteristic of a ventilated supercavitating vehicle with high Froude number, Ocean Engineering, Vol. 268, p.113457.
https://doi.org/10.1016/j.oceaneng.2022.113457 [
DOI:10.1016/j.oceaneng.2022.113457.]
2. Daijin, L., Fengjie, L., Yazhen, S., Jianjun, D. and Kai, L., (2020), A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles, Ocean Engineering, Vol. 215, p.107894.
https://doi.org/10.1016/j.oceaneng.2020.107894 [
DOI:10.1016/j.oceaneng.2020.107894.]
3. Li, Y., Wang, C., Wei, Y., Cao, W., Lu, J., Xia, S. and Xu, H., (2023), On water-entry cavity evolution models and maneuvering motion of supercavitating vehicle. Physics of Fluids, Vol. 35(7).
https://doi.org/10.1063/5.0158099 [
DOI:10.1063/5.0158099.]
4. Zou, W., Liu, T., Shi, Y. and Wang, J., (2021). Analysis of motion characteristics of a controllable ventilated supercavitating vehicle under accelerations. Journal of Fluids Engineering, Vol. 143(11), p.111204.
https://doi.org/10.1115/1.4051216 [
DOI:10.1115/1.4051216.]
5. Kamali, H.A., Erfanian, M.R. and Pasandidehfard, M., (2024). Experimental and numerical analysis of cavitator angle effects on artificial cavitation characteristics under low ventilation coefficients, with prediction using optimized random forest and extreme gradient boosting models. Ocean Engineering, Vol. 309, p.118446.
https://doi.org/10.1016/j.oceaneng.2024.118446 [
DOI:10.1016/j.oceaneng.2024.118446.]
6. O'neill, J.P., (1954). Flow around bodies with attached open cavities (No. E247). [
DOI:10.21236/AD0064364]
7. Pham, D., Hong, J.W., Hilo, A.K. and Ahn, B.K., (2022). Numerical study of hot-gas ventilated supercavitating flow. International Journal of Naval Architecture and Ocean Engineering, Vol. 14, p.100470.
https://doi.org/10.1016/j.ijnaoe.2022.100470 [
DOI:10.1016/j.ijnaoe.2022.10047.]
8. Kamali, H.A., Pasandidehfard, M., and Kadivar, E., (2024). Analyzing the influence of dimensions of the body behind the cavitator on ventilated cavitation. Physics of Fluids, Vol. 36,
https://doi.org/10.1063/5.0207797 [
DOI:10.1063/5.0207797.]
9. Mao, X. and Wang, Q., (2015). Adaptive control design for a supercavitating vehicle model based on fin force parameter estimation. Journal of Vibration and Control, 21(6), pp.1220-1233.
https://doi.org/10.1177/1077546313496263 [
DOI:10.1177/1077546313496263.]
10. Goel, A., (2005). Robust control of supercavitating vehicles in the presence of dynamic and uncertain cavity. University of Florida ProQuest Dissertations & Theses, 3192387.
11. Yun-tao, H., Zhen, X., & Tao, B. (2020). Predictive Control of Supercavitating Vehicle Based on Time Delay Characteristics. Journal Huazhong University of Science&Technology, Vol. 48(7), pp. 52-57.
https://doi.org/10.1109/ACCESS.2020.3046517 [
DOI:10.1109/ACCESS.2020.3046517.]
12. Zou, W., Liu, T., & Shi, Y. (2021). Optimization of the maximum range of supercavitating vehicles based on a genetic algorithm. Ocean Engineering, Vol. 239, 109892.
https://doi.org/10.1016/j.oceaneng.2021.109892 [
DOI:10.1016/j.oceaneng.2021.109892.]
13. Li, Y., Wang, C., Wei, Y., Cao, W., Lu, J., Xia, S., & Xu, H. (2023). On water-entry cavity evolution models and maneuvering motion of supercavitating vehicle. Physics of Fluids, Vol. 35(7).
https://doi.org/10.1063/5.0158099 [
DOI:10.1063/5.0158099.]
14. Du, X., Shi, Y., Yang, L.H. and Sun, X.M., (2022). A method of multiple model adaptive control of affine systems and its application to aero-engines. Journal of the Franklin Institute, Vol. 359(10), pp.4727-4750.
https://doi.org/10.1016/j.jfranklin.2022.05.001 [
DOI:10.1016/j.jfranklin.2022.05.001.]
15. Panda, S.K. and Subudhi, B., (2022). A review on robust and adaptive control schemes for microgrid. Journal of Modern Power Systems and Clean Energy, Vol. 11(4), pp.1027-1040.
https://doi.org/10.35833/MPCE.2021.000817 [
DOI:10.35833/MPCE.2021.000817.]
16. Mokhtarzadeh H., Balas, G. and Arndt, R., (2012). Effect of cavitator on supercavitating vehicle dynamics. IEEE Journal of Oceanic Engineering, 37(2), pp.156-165.
https://doi.org/10.1109/JOE.2011.2177689 [
DOI:10.1109/JOE.2011.2177689.]