Write your message

XML Persian Abstract Print


1- Teacher and researcher at the Imam Ja'far Sadiq Naval Special Training Center, Bushehr
2- Imam Khomeini University of Marine Science in Nowshahr & Naval Research Organization
3- Assistant Professor of the Faculty of Electrical Engineering at Zabol University
Abstract:   (57 Views)
This paper investigates the automatic recognition of sonar targets using group classification that uses majority votes weighted and optimized by the Hiking Optimization Algorithm (HOA). Complex sonar targets and environmental challenges in the seas have increased the need for advanced AI techniques that are highly accurate and flexible. The HOA, which is based on the climbing model, strives to provide a more accurate optimization for the weighting of base classifications. This paper uses five basic classifiers, including XGBoost, LightGBM, CatBoost, Logistic Regression (LR), and Gradient Boosting Machine (GBM), which improve the accuracy of recognition and error reduction by combining them into an MV-HOA-based group classifier. The results show that the use of group classification method with HOA algorithm has significant capabilities in identifying sonar targets and can be useful for industrial and military applications. This innovative method not only optimizes classifier votes, but also reduces computational complexity and allows it to be applied in complex marine environments.
Full-Text [PDF 1228 kb]   (25 Downloads)    
Type of Study: Research Paper | Subject: Main Engine & Electrical Equipments
Received: 2025/05/12 | Accepted: 2025/10/18

References
1. M. Khishe and H. Mohammadi, "Passive sonar target classi fi cation using multi-layer perceptron trained by salp swarm algorithm," Ocean Eng., vol. 181, no. May 2018, pp. 98-108, 2019, doi: 10.1016/j.oceaneng.2019.04.013. [DOI:10.1016/j.oceaneng.2019.04.013]
2. W. Qiao, M. Khishe, and S. Ravakhah, "Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified Whale Optimization Algorithm," Ocean Eng., vol. 219, no. June 2020, p. 108415, 2021, doi: 10.1016/j.oceaneng.2020.108415. [DOI:10.1016/j.oceaneng.2020.108415]
3. F. A. Alenizi, O. M. Alsalami, A. Safari, S. H. Zahiri, and M. Mohammadi, "Decision Fusion and Micro-Doppler Effects in Moving Sonar Target Recognition," vol. 2023, 2023. [DOI:10.1155/2023/2768126]
4. A. SAFFARI, S. H. ZAHIRI, and N. K. GHANAD, "Using SVM Classifier and Micro-Doppler Signature for Automatic Recognition of Sonar Targets," Arch. Acoust., vol. 48, no. 1, pp. 49-61, 2023. [DOI:10.24425/aoa.2022.142909]
5. W. Kazimierski and G. Zaniewicz, "Determination of process noise for underwater target tracking with forward looking sonar," Remote Sens., vol. 13, no. 5, pp. 1-21, 2021, doi: 10.3390/rs13051014. [DOI:10.3390/rs13051014]
6. N. Hurtós, N. Palomeras, A. Carrera, and M. Carreras, "Autonomous detection , following and mapping of an underwater chain using sonar," Ocean Eng., vol. 130, no. May, pp. 336-350, 2016, doi: 10.1016/j.oceaneng.2016.11.072. [DOI:10.1016/j.oceaneng.2016.11.072]
7. A. Saffari, S. H. Zahiri, and M. Khishe, "Automatic recognition of sonar targets using feature selection in micro-Doppler signature," Def. Technol., 2022, doi: 10.1016/j.dt.2022.05.007. [DOI:10.1016/j.dt.2022.05.007]
8. D. Neupane and J. Seok, "A review on deep learning-based approaches for automatic sonar target recognition," Electron., vol. 9, no. 11, pp. 1-30, 2020, doi: 10.3390/electronics9111972. [DOI:10.3390/electronics9111972]
9. W. Tobler, Three presentations on geographical analysis and modeling: National Center for Geographic Information and Analysis., no. February. 1993.
10. M. F. Goodchild, Beyond Tobler's Hiking Function, vol. 52, no. 4. 2020. doi: 10.1111/gean.12253. [DOI:10.1111/gean.12253]
11. A. Kaveh and M. R. Moghaddam, "A hybrid WOA-CBO algorithm for construction site layout planning problem," vol. 25, pp. 1094-1104, 2018, doi: 10.24200/sci.2017.4212. [DOI:10.24200/sci.2017.4212]
12. A. Saffari, M. Khishe, M. Mohammadi, A. Hussein Mohammed, and S. Rashidi, "DCNN-FuzzyWOA: Artificial Intelligence Solution for Automatic Detection of COVID-19 Using X-Ray Images," Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/5677961. [DOI:10.1155/2022/5677961] [PMID] []
13. M. Khishe and M. R. Mosavi, "Improved whale trainer for sonar datasets classification using neural network," Appl. Acoust., vol. 154, pp. 176-192, 2019, doi: 10.1016/j.apacoust.2019.05.006. [DOI:10.1016/j.apacoust.2019.05.006]
14. A. Saffari, S. H. Zahiri, and M. Khishe, "Fuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognition," J. Exp. Theor. Artif. Intell., no. February, 2022, doi: 10.1080/0952813X.2021.1960639. [DOI:10.1080/0952813X.2021.1960639]
15. R. P. Gorman and T. J. Sejnowski, "Analysis of hidden units in a layered network trained to classify sonar targets," Neural Networks, vol. 1, no. 1, pp. 75-89, 1988, doi: 10.1016/0893-6080(88)90023-8. [DOI:10.1016/0893-6080(88)90023-8]
16. A. Saffari, S. Zahiri, and M. Khishe, "Automatic recognition of sonar targets using feature selection in micro-Doppler signature," Def. Technol., no. xxxx, 2022, doi: 10.1016/j.dt.2022.05.007. [DOI:10.1016/j.dt.2022.05.007]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.