1. S. Mittal, S. Srivastava, and J. P. Jayanth, "A Survey of Deep Learning Techniques for Underwater Image Classification," IEEE Transactions on Neural Networks and Learning Systems, pp. 1-15, 2022.
https://doi.org/10.1109/TNNLS.2022.3143887 [
DOI:10.1109/tnnls.2022.3143887.] [
PMID]
2. T. T. Chungath, A. M. Nambiar, and A. Mittal, "Transfer learning and few-shot learning based deep neural network models for underwater sonar image classification with a few samples," IEEE Journal of Oceanic Engineering, vol. 49, no. 1, pp. 294-310, 2023.
https://doi.org/10.1109/JOE.2022.3221127 [
DOI:10.1109/JOE.2022.3221127.]
3. M. S. Mohammed, H. A. Khater, Y. F. Hassan, and A. Elsayed, "Proposed approach for automatic underwater object classification," ICIC International, vol. 12, no. 12, pp. 1205-1212, 2018. https://doi.org/ 10.24507/icicel.12.12.1205. [
DOI:10.24507/icicel.12.12.1205.]
4. M. Goyal, T. Knackstedt, S. Yan, and S. Hassanpour, "Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities," Computers in biology and medicine, vol. 127, p. 104065, 2020.
https://doi.org/10.1016/j.compbiomed.2020.104065 [
DOI:10.1016/j.compbiomed.2020.104065.] [
PMID] [
]
5. X. Du‐Harpur, F. Watt, N. Luscombe, and M. Lynch, "What is AI? Applications of artificial intelligence to dermatology," British Journal of Dermatology, vol. 183, no. 3, pp. 423-430, 2020.
https://doi.org/10.1111/bjd.18880 [
DOI:10.1111/bjd.18880.] [
PMID] [
]
6. A. Saleh, M. Sheaves, and M. Rahimi Azghadi, "Computer vision and deep learning for fish classification in underwater habitats: A survey," Fish and Fisheries, vol. 23, no. 4, pp. 977-999, 2022.
https://doi.org/10.1111/faf.12666 [
DOI:10.1111/faf.12666.]
7. F. Han, J. Yao, H. Zhu, and C. Wang, "Underwater image processing and object detection based on deep CNN method," Journal of Sensors, vol. 2020, no. 1, p. 6707328, 2020.
https://doi.org/10.1155/2020/6707328 [
DOI:10.1155/2020/6707328.]
8. J. Bharadiya, "Convolutional neural networks for image classification," International Journal of Innovative Science and Research Technology, vol. 8, no. 5, pp. 673-677, 2023.
9. M. Tripathi, "Analysis of convolutional neural network based image classification techniques," Journal of Innovative Image Processing (JIIP), vol. 3, no. 02, pp. 100-117, 2021.
https://doi.org/10.36548/jiip.2021.2.003 [
DOI:10.36548/jiip.2021.2.003.]
10. M. Aridoss, C. Dhasarathan, A. Dumka, and J. Loganathan, "DUICM deep underwater image classification mobdel using convolutional neural networks," International Journal of Grid and High Performance Computing (IJGHPC), vol. 12, no. 3, pp. 88-100, 2020. [
DOI:10.4018/IJGHPC.2020070106]
11. A. Mahmood, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, "ResFeats: Residual network based features for underwater image classification," Image and Vision Computing, vol. 93, p. 103811, 2020.
https://doi.org/10.1016/j.imavis.2019.09.002 [
DOI:10.1016/j.imavis.2019.09.002.]
12. M. Yang, H. Wang, K. Hu, G. Yin, and Z. Wei, "IA-Net: An inception-attention-module-based network for classifying underwater images from others," IEEE Journal of Oceanic Engineering, vol. 47, no. 3, pp. 704-717, 2022.
https://doi.org/10.1109/JOE.2021.3126090 [
DOI:10.1109/JOE.2021.3126090.]
13. J. Yang, M. Cai, X. Yang, and Z. Zhou, "Underwater image classification algorithm based on convolutional neural network and optimized extreme learning machine," Journal of Marine Science and Engineering, vol. 10, no. 12, p. 1841, 2022.
https://doi.org/10.3390/jmse10121841 [
DOI:10.3390/jmse10121841.]
14. G. Li et al., "MCANet: Multi-channel attention network with multi-color space encoder for underwater image classification," Computers and Electrical Engineering, vol. 108, p. 108724, 2023.
https://doi.org/10.1016/j.compeleceng.2023.108724 [
DOI:10.1016/j.compeleceng.2023.108724.]
15. S. Xiao, X. Shen, Z. Zhang, J. Wen, M. Xi, and J. Yang, "Underwater image classification based on image enhancement and information quality evaluation," Displays, vol. 82, p. 102635, 2024.
https://doi.org/10.1016/j.displa.2023.102635 [
DOI:10.1016/j.displa.2023.102635.]
16. S. Jamandlamudi, D. P. Isravel, and J. P. M. Dhas, "CNN Based Model for Underwater Image Classification and Enhancement," in 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE), 2024: IEEE, pp. 1-8.
https://doi.org/10.1109/AMATHE61652.2024.10582240 [
DOI:10.1109/AMATHE61652.2024.10582240.]
17. M. Khodadadzadeh, X. Ding, P. Chaurasia, and D. Coyle, "A hybrid capsule network for hyperspectral image classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 11824-11839, 2021.
https://doi.org/10.1109/JSTARS.2021.3126427 [
DOI:10.1109/JSTARS.2021.3126427.]
18. Z. Sun, G. Zhao, R. Scherer, W. Wei, and M. Woźniak, "Overview of capsule neural networks," Journal of Internet Technology, vol. 23, no. 1, pp. 33-44, 2022. [
DOI:10.53106/160792642022012301004]
19. M. Abdullah-Al-Wadud, Md. Kabir, M. Akber Dewan, and O. Chae, "A Dynamic Histogram Equalization for Image Contrast Enhancement," IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 593-600, 2007.
https://doi.org/10.1109/TCE.2007.381734 [
DOI:10.1109/tce.2007.381734.]
20. V. T, "COMPARATIVE STUDY OF CAPSULE NEURAL NETWORK IN VARIOUS APPLICATIONS," Journal of Artificial Intelligence and Capsule Networks, vol. 01, no. 01, pp. 19-27, Sep. 2019.
https://doi.org/10.36548/jaicn.2019.1.003 [
DOI:10.36548/jaicn.2019.1.003.]
21. P. Rodríguez, M. A. Bautista, J. Gonzàlez, and S. Escalera, "Beyond one-hot encoding: Lower dimensional target embedding," Image and Vision Computing, vol. 75, pp. 21-31, Jul. 2018.
https://doi.org/10.1016/j.imavis.2018.04.004 [
DOI:10.1016/j.imavis.2018.04.004.]
22. A. Ali-Gombe and E. Elyan, "MFC-GAN: Class-imbalanced dataset classification using multiple fake class generative adversarial network," Neurocomputing, vol. 361, pp. 212-221, 2019.
https://doi.org/10.1016/j.neucom.2019.06.043 [
DOI:10.1016/j.neucom.2019.06.043.]
23. N. Bigdeli, H. Jabbari, and M. Shojaei, "An intelligent method for crack classification in concrete structures based on deep neural networks, "Amirkabir Journal of Civil Engineering, vol. 53, no. 8, pp. 3201-3220. Oct. 2021. [
DOI:10.22060/ceej.2020.17738.6660.]
24. H. Jabbari and Nooshin Bigdeli, "New conditional generative adversarial capsule network for imbalanced classification of human sperm head images," Neural Computing and Applications, vol. 35, no. 27, pp. 19919-19934, Jul. 2023.
https://doi.org/10.1007/s00521-023-08742-3 [
DOI:10.1007/s00521-023-08742-3.]
25. H. Jabbari and N. Bigdeli, "A new hierarchical algorithm based on CapsGAN for imbalanced image classification," IET Image Processing, vol. 18, no. 1, pp. 194-210, Oct. 2023.
https://doi.org/10.1049/ipr2.12942 [
DOI:10.1049/ipr2.12942.]
26. H. Jabbari and N. Bigdeli, "Design and Evaluation of a New Capsule Neural Network (CapsNet) for Imbalanced Images Classification," Journal of Machine Vision and Image Processing, vol. 9, no. 1, pp. 1-15, Apr. 2022.
27. H. Jabbari and N. Bigdeli, "A New Capsule Generative Adversarial Network for Imbalanced Classification of Human Sperm Images," Journal of Modeling in Engineering, vol. 21, no. 73, pp. 279-294. June. 2023. [
DOI:10.22075/JME.2023.28349.2333.]
28. H. Jabbari, H. Hooshmand, and N. Bigdeli, "A Novel Intelligent Method Based on Capsule Networks for Maritime Ship," Classification. Journal of Machine Vision and Image Processing, Accepted Manuscript, Available Online from 11 August 2025.