Write your message
Volume 20, Issue 42 (4-2024)                   Marine Engineering 2024, 20(42): 13-23 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gharechae A. Utilizing the method of random composition of incomplete noisy data in the health monitoring of structures using the frequency response function. Marine Engineering 2024; 20 (42) :13-23
URL: http://marine-eng.ir/article-1-1090-en.html
Chabahar Maritime University
Abstract:   (676 Views)
Health monitoring and damage detection of structures have always been one of the concerns of engineers and researchers. In the meantime, some structures are of vital importance at the national level of countries and their health should be evaluated periodically. In structural health monitoring, field measurement data of the existing structure is used to find the location and extent of failures. Field data are collected by installing measuring equipment in a limited number of structural degrees of freedom. These data are always associated with a percentage of error or noise. In this research, the ability of the random composition of measurement data in structural damage detection has been evaluated using the frequency response function. For this purpose, the developed method was applied to a high-voltage power transmission tower in different damage scenarios. The results show the high ability of this method to predict the amount and location of the damage in the presence of noisy data. When the amount of noise in the data is less than 5%, the results of the above method are completely consistent with the previous conventional methods. When up to 35% of the noise is spread in less than 50% of the data, while conventional methods fail to predict the amount and position of the damages, the present method detects the position and amount of damage with high accuracy. Numerical examples using noisy data confirm that the proposed method can be used in all methods of damage detection in structures.
Full-Text [PDF 1494 kb]   (204 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2023/12/25 | Accepted: 2024/04/8

References
1. HONG-PING, Z., BO, H. and XIAO-QIANG, C.,(2005), Detection of structural damage through changes in frequency, Wuhan University Journal of Natural Sciences 10(6), p. 1069-1073. DOI: 10.1007/BF02832469 [DOI:10.1007/BF02832469]
2. DOEBLING, S. W., FARRAR, C. R., PRIME, M. B. and SHEVITZ, D. W.,(1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. DOI: 10.2172/249299 [DOI:10.2172/249299]
3. FAN, W. and QIAO, P.,(2011), Vibration-based damage identification methods: a review and comparative study, Structural health monitoring 10(1), p. 83-111. DOI: 10.1177/1475921710365419 [DOI:10.1177/1475921710365419]
4. ESFANDIARI, A., SANAYEI, M., BAKHTIARI-NEJAD, F. and RAHAI, A.,(2010), Finite element model updating using frequency response function of incomplete strain data, AIAA journal 48(7), p. 1420-1433. DOI: 10.2514/1.J050039 [DOI:10.2514/1.J050039]
5. IZADI, A. and ESFANDIARI, A.,(2023), Structural damage identification by a sensitivity-based finite element model updating method using transmissibility function data, Ships and Offshore Structures 18(10), p. 1415-1428. DOI: 10.1080/17445302.2022.2120296 [DOI:10.1080/17445302.2022.2120296]
6. YAO, R. and PAKZAD, S. N.,(2015), Multisensor aggregation algorithms for structural damage diagnosis based on a substructure concept, Journal of Engineering Mechanics 141(6), p. 04014164. DOI: 10.1061/(ASCE)EM.1943-7889.000087 [DOI:10.1061/(ASCE)EM.1943-7889.0000879]
7. TOMASZEWSKA, A.,(2010), Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature, Computers & structures 88(3-4), p. 154-164. DOI: 10.1016/j.compstruc.2009.08.017 [DOI:10.1016/j.compstruc.2009.08.017]
8. OSTACHOWICZ, W., SOMAN, R. and MALINOWSKI, P.,(2019), Optimization of sensor placement for structural health monitoring: A review, Structural health monitoring 18(3), p. 963-988. DOI: 10.1177/1475921719825601 [DOI:10.1177/1475921719825601]
9. NI, Z., WU, C., WU, S. and ZHANG, Y.,(2021), in 2021 40th Chinese Control Conference (CCC). IEEE, p. 1189-1194. DOI: 10.23919/CCC52363.2021.9550482 [DOI:10.23919/CCC52363.2021.9550482]
10. 11- YANG, C. and XIA, Y.,(2022), Optimal sensor placement based on dynamic condensation using multi-objective optimization algorithm, Structural and Multidisciplinary Optimization 65(7), p. 210. DOI: 10.1007/s00158-022-03307-9 [DOI:10.1007/s00158-022-03307-9]
11. 12- HUANG, W., CAO, H., GU, Y., YANG, X. and LIU, W.,(2021), in 2021 China Automation Congress (CAC). IEEE, p. 3446-3451. DOI: 10.1109/CAC53003.2021.9727487 [DOI:10.1109/CAC53003.2021.9727487] [PMID]
12. 13- KAMMER, D. C.,(1991), Sensor placement for on-orbit modal identification and correlation of large space structures, Journal of Guidance, Control, and Dynamics 14(2), p. 251-259. DOI: 10.2514/3.20635 [DOI:10.2514/3.20635]
13. YAO, L., SETHARES, W. A. and KAMMER, D. C.,(1993), Sensor placement for on-orbit modal identification via a genetic algorithm, AIAA journal 31(10), p. 1922-1928. DOI: 10.2514/3.11868 [DOI:10.2514/3.11868]
14. REYNIER, M. and ABOU-KANDIL, H.,(1999), Sensors location for updating problems, Mechanical systems and signal processing 13(2), p. 297-314. DOI: 10.1006/mssp.1998.1213 [DOI:10.1006/mssp.1998.1213]
15. XIA, Y. and HAO, H.,(2000), Measurement selection for vibration-based structural damage identification, Journal of Sound and Vibration 236(1), p. 89-104. DOI: 10.1006/jsvi.2000.2960 [DOI:10.1006/jsvi.2000.2960]
16. TRENDAFILOVA, I., HEYLEN, W. and VAN BRUSSEL, H.,(2001), Measurement point selection in damage detection using the mutual information concept, Smart materials and structures 10(3), p. 528. DOI: 10.1088/0964-1726/10/3/315 [DOI:10.1088/0964-1726/10/3/315]
17. SKELTON, R. E. and LI, F.,(2004), in Smart Structures and Materials 2004: Modeling, Signal Processing, and Control. SPIE, vol. 5383, p. 194-201. DOI: 10.1117/12.540156 [DOI:10.1117/12.540156]
18. KAOUK, M. and ZIMMERMAN, D. C.,(1994), Structural damage assessment using a generalized minimum rank perturbation theory, AIAA journal 32(4), p. 836-842. DOI: 10.2514/3.12061 [DOI:10.2514/3.12061]
19. ZIMMERMAN, D. C. and KAOUK, M.,(1994), Structural damage detection using a minimum rank update theory. DOI: 10.1115/1.2930416 [DOI:10.1115/1.2930416]
20. GHARECHAHI, A. and KETABDARI, M. J.,(2017), A novel method for selecting measurement points in structural model updating and damage detection, Journal of Civil Structural Health Monitoring 7, p. 471-482. DOI: 10.1007/s13349-017-0237-4 [DOI:10.1007/s13349-017-0237-4]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.