1. 1- Goodarzi, S., & Shahnazari, H., (2019). Strength enhancement of geotextile-reinforced carbonate sand, Geotextiles, and Geomembranes, 47, p. 128-139. doi.org/10.1016/j.geotexmem.2018.12.004 [
DOI:10.1016/j.geotexmem.2018.12.004]
2. Hakimelahi, N., Bayat, M., Ajalloeian, R. & Nadi, B., (2023). Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands, Case Studies in Construction Materials, 18, p. e02014. doi.org/10.1016/j.cscm.2023.e02014 [
DOI:10.1016/j.cscm.2023.e02014]
3. Tavakol, K., Bayat, M., Nadi, B. & Ajalloeian, R., (2023). Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand, KSCE Journal of Civil Engineering, 27(9), pp. 3729-3739. doi.org/10.1007/s12205-023-0695-7 [
DOI:10.1007/s12205-023-0695-7]
4. Ou, Q., Li, Y., Yang, Y., Luo, Z., Han, S. & Zou, T., (2022). Mechanical Property of Biomodified Geogrid and Reinforced Calcareous Sand. Geofluids, 2022 Apr 5, doi.org/10.1155/2022/3768967 [
DOI:10.1155/2022/3768967]
5. Rezvani, R., (2019). Shearing response of geotextile- reinforced calcareous soils using monotonic triaxial tests, Marine Georesources & Geotechnology, 38, p. 238-249. doi.org/10.1080/1064119X.2019.1566936 [
DOI:10.1080/1064119X.2019.1566936]
6. Wang, X., Z., Jiao, Y., Y., Wang, R., Meng, Q., S., & Tan, F., Y., (2011). Engineering characteristics of the calcareous sand in nansha islands, South China sea, Engineering Geology, 120, p. 40-47. doi.org/10.1016/j.enggeo.2011.03.011 [
DOI:10.1016/j.enggeo.2011.03.011]
7. Rezvani, R., Nabizadeh, A., & Amin, Tutunchian, M., (2021). The effect of particle size distribution on shearing response and particle breakage of two different calcareous soils. The European Physical Journal Plus, 136. doi.org/10.1140/epjp/s13360-021-01871-5
https://doi.org/10.1140/epjp/s13360-021-01871-5 [
DOI:10.1140/epjp/s13360-021-02114-3]
8. Shahnazari, H., Jafarian, Y., Tutunchian, M., A., & Rezvani, R., (2016). Probabilistic Assessment of Liquefaction Occurrence in Calcareous Fill Materials of Kawaihae Harbor, Hawaii. International Journal of Geomechanics, 16(6), p. 05016001. doi.org/10.1061/(ASCE)GM.1943-5622.00006 [
DOI:10.1061/(ASCE)GM.1943-5622.0000621]
9. Ding, X., M., Luo, Z., G., & Ou, Q., (2022). Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotextiles and Geomembranes, 50(4), p. 618-631. doi.org/10.1016/j.geotexmem.2022.03.002 [
DOI:10.1016/j.geotexmem.2022.03.002]
10. Varadarajan, A., Sharma, K., G., Venkatachalam, K., & Gupta, A., K., (2003). Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 129, p. 206-218. doi.org/10.1061/090-0241(2003)129:3(206) [
DOI:10.1061/(ASCE)1090-0241(2003)129:3(206)]
11. Wichtmann, T., Niemunis, A., & Triantafyllidis, T., (2005). Strain accumulation in sand due to cyclic loading: drained triaxial tests, Soil Dynamics and Earthquake Engineering, 25, p. 967-979. doi.org/10.1016/j.soildyn.2005.02.022 [
DOI:10.1016/j.soildyn.2005.02.022]
12. Karg, C., & Haegeman, W., (2009). Elasto-plastic long-term behaviour of coarse-grained soils: experimental investigation. Soil Dynamics and Earthquake Engineering, 29, p. 155-172. doi.org/10.1016/j.soildyn.2010.02.006 [
DOI:10.1016/j.soildyn.2008.01.001]
13. Hardin, B., O., (1985). Crushing of soil particles, Journal of Geotechnical and Geoenvironmental Engineering, 111, p. 1177-1192. doi.org/10.10610733-9410(1985)111:10(117) [
DOI:10.1061/(ASCE)0733-9410(1985)111:10(1177)]
14. Nguyen, M., D., Yang, K., H., Lee, S., H., Wu, C., S., & Tsai, M., H., (2013). The behavior of non-woven geotextile-reinforced sand and mobilization of reinforcement strain under triaxial compression, Geosynthetics International, 20, p. 207-225. doi.org/10.1680/gein.13.00012 [
DOI:10.1680/gein.13.00012]
15. Tizpa, P., Chenari, R., J., Fard, M., K., & Machado, S., L., (2015). ANN prediction of some geotechnical properties of soil from their index parameters, Arabian Journal of Geosciences, 8, p. 2911-2920. doi.org/10.1007/s12517-014-1304-3 [
DOI:10.1007/s12517-014-1304-3]
16. Shahnazari, H., & Rezvani, R., (2013). Effective parameters for the particle breakage of calcareous sands: An experimental study, Engineering Geology, 159, p. 98-105. doi.org/10.1016/j.enggeo.2013.03.005 [
DOI:10.1016/j.enggeo.2013.03.005]
17. Wang, X., Z., Weng, Y., L., Wei, H., Z., Meng, Q., S., & Hu, M., J., (2019). Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea, Engineering Geology, 261, p. 105274. doi.org/10.1016/j.enggeo.2019.105274 [
DOI:10.1016/j.enggeo.2019.105274]
18. Feia, S., Sulem, J., Canou, J., Ghabezloo, S., & Clain, X., (2016). Changes in permeability of sand during triaxial loading: effect of fine particles production, Acta Geotechnica, 11, p. 1-19. doi.org/10.1007/s11440-014-0351-y [
DOI:10.1007/s11440-014-0351-y]
19. Zhu, S., Z., (2003). The Theory of Triaxial Test and its Application, CEPP Press, Peking, p. 71-75.
20. Hyodo, M., Aramaki, N., Itoh, M., & Hyde, A., F., L., (1996). Cyclic strength and deformation of crushable carbonate sand, Soil Dynamics and Earthquake Engineering, 15, p. 331-336. doi.org/10.1016/0267-7261(96)00003-6 [
DOI:10.1016/0267-7261(96)00003-6]
21. LaVielle, T., H., (2004). Liquefaction Susceptibility of Uncemented Calcareous Sands from Puerto Rico by cyclic triaxial testing, Ph.D. dissertation. Virginia Tech, Blacksburg, VA. Coop et al.
22. Hassanlourad, M., H., Salehzadeh, H., & Shahnazari, H., (2008). Dilatancy and Particle Breakage Effects on the Shear Strength of Calcareous Sands Based on Energy Aspects, International Journal of Civil Engineering, 6 (2), p. 108-119.
23. Wei, H., Z., Li, X., X., Zhang, S., D., Zhao, T., Yin, M., & Meng, Q., S., (2021). Influence of particle breakage on drained shear strength of calcareous sands, International Journal of Geomechanics, 21. doi.org/10.1061/(ASCE)GM.1943-5622.000207 [
DOI:10.1061/(ASCE)GM.1943-5622.0002078]
24. Wu, Y., Li, N., Wang, X., Cui, J., Chen, Y., Wu, Y., & Yamamoto, H., (2021). Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea, Engineering Geology, 280. doi.org/10.1016/j.enggeo.2020.105932 [
DOI:10.1016/j.enggeo.2020.105932]
25. Li, X., & Liu, J., K., (2021). One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction, Bulletin of Engineering Geology and the Environment, 80, p. 4049-4065. doi.org/10.1007/s10064-021-02160-2 [
DOI:10.1007/s10064-021-02160-2]