Write your message
Volume 20, Issue 42 (4-2024)                   Marine Engineering 2024, 20(42): 24-35 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hakimelahi N, Bayat M, Ajalloeian R, Nadi B. Effect of Woven Geotextile and Geogrid on Mechanical Properties and Deformation Behavior of Kish Carbonate Sand. Marine Engineering 2024; 20 (42) :24-35
URL: http://marine-eng.ir/article-1-1060-en.html
1- Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2- Department of Geology, Faculty of Science, University of Isfahan, Isfahan, Iran.
Abstract:   (469 Views)
Carbonate sands are among the potential material sources for marine engineering constructions. However, the brittleness and large deformations created in these sands can affect the stability of marine structures built on these soils. Today, geosynthetics are used to reinforce and increase the strength of these soils. CD triaxial tests were conducted under different confining pressure values to compare the mechanical and deformation properties of reinforced and unreinforced calcareous sand. The influences of configuration of reinforcing layers, confining pressure, relative density, and type of woven geotextile have been evaluated. The results show that compared to the unreinforced carbonate sand, the strength of the reinforced samples increases markedly, and the deviatoric stress-strain curves change from slight softening to hardening and dilatancy. Compared to unreinforced calcareous sand specimens, the strength of reinforced specimens significantly increased such that this growth reached 100% in some specimens with low confining pressure. Also, by increasing the number of geotextile and geogrid layers and applying a confining pressure, the shear deformation shifts toward strain-hardening behavior. dilative behavior of the specimens increases with an increase in the relative density of the specimens. The results showed that the influence of the number of layers and arrangement of geosynthetics on the mechanical behavior and deformation of triaxial specimens decreases with increasing the confining pressure. The amount of strength increase in reinforced specimens at low confining pressure is relatively high and tends to decrease with increasing the confining pressure. Overall, woven geotextile and geogrid significantly improve the apparent cohesion strength of carbonate sand soil. Woven geotextile and geogrid, relative density, and confining pressure all contribute to volumetric changes and dilatancy of reinforced specimens, but particle breakage is more affected by confining pressure. Finally, the results showed that geogrid has a better performance in reinforcement than geotextile.
Full-Text [PDF 1587 kb]   (125 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2023/09/25 | Accepted: 2024/04/18

References
1. 1- Goodarzi, S., & Shahnazari, H., (2019). Strength enhancement of geotextile-reinforced carbonate sand, Geotextiles, and Geomembranes, 47, p. 128-139. doi.org/10.1016/j.geotexmem.2018.12.004 [DOI:10.1016/j.geotexmem.2018.12.004]
2. Hakimelahi, N., Bayat, M., Ajalloeian, R. & Nadi, B., (2023). Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands, Case Studies in Construction Materials, 18, p. e02014. doi.org/10.1016/j.cscm.2023.e02014 [DOI:10.1016/j.cscm.2023.e02014]
3. Tavakol, K., Bayat, M., Nadi, B. & Ajalloeian, R., (2023). Combined Influences of Cement, Rice Husk Ash and Fibre on the Mechanical Characteristics of a Calcareous Sand, KSCE Journal of Civil Engineering, 27(9), pp. 3729-3739. doi.org/10.1007/s12205-023-0695-7 [DOI:10.1007/s12205-023-0695-7]
4. Ou, Q., Li, Y., Yang, Y., Luo, Z., Han, S. & Zou, T., (2022). Mechanical Property of Biomodified Geogrid and Reinforced Calcareous Sand. Geofluids, 2022 Apr 5, doi.org/10.1155/2022/3768967 [DOI:10.1155/2022/3768967]
5. Rezvani, R., (2019). Shearing response of geotextile- reinforced calcareous soils using monotonic triaxial tests, Marine Georesources & Geotechnology, 38, p. 238-249. doi.org/10.1080/1064119X.2019.1566936 [DOI:10.1080/1064119X.2019.1566936]
6. Wang, X., Z., Jiao, Y., Y., Wang, R., Meng, Q., S., & Tan, F., Y., (2011). Engineering characteristics of the calcareous sand in nansha islands, South China sea, Engineering Geology, 120, p. 40-47. doi.org/10.1016/j.enggeo.2011.03.011 [DOI:10.1016/j.enggeo.2011.03.011]
7. Rezvani, R., Nabizadeh, A., & Amin, Tutunchian, M., (2021). The effect of particle size distribution on shearing response and particle breakage of two different calcareous soils. The European Physical Journal Plus, 136. doi.org/10.1140/epjp/s13360-021-01871-5 https://doi.org/10.1140/epjp/s13360-021-01871-5 [DOI:10.1140/epjp/s13360-021-02114-3]
8. Shahnazari, H., Jafarian, Y., Tutunchian, M., A., & Rezvani, R., (2016). Probabilistic Assessment of Liquefaction Occurrence in Calcareous Fill Materials of Kawaihae Harbor, Hawaii. International Journal of Geomechanics, 16(6), p. 05016001. doi.org/10.1061/(ASCE)GM.1943-5622.00006 [DOI:10.1061/(ASCE)GM.1943-5622.0000621]
9. Ding, X., M., Luo, Z., G., & Ou, Q., (2022). Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotextiles and Geomembranes, 50(4), p. 618-631. doi.org/10.1016/j.geotexmem.2022.03.002 [DOI:10.1016/j.geotexmem.2022.03.002]
10. Varadarajan, A., Sharma, K., G., Venkatachalam, K., & Gupta, A., K., (2003). Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 129, p. 206-218. doi.org/10.1061/090-0241(2003)129:3(206) [DOI:10.1061/(ASCE)1090-0241(2003)129:3(206)]
11. Wichtmann, T., Niemunis, A., & Triantafyllidis, T., (2005). Strain accumulation in sand due to cyclic loading: drained triaxial tests, Soil Dynamics and Earthquake Engineering, 25, p. 967-979. doi.org/10.1016/j.soildyn.2005.02.022 [DOI:10.1016/j.soildyn.2005.02.022]
12. Karg, C., & Haegeman, W., (2009). Elasto-plastic long-term behaviour of coarse-grained soils: experimental investigation. Soil Dynamics and Earthquake Engineering, 29, p. 155-172. doi.org/10.1016/j.soildyn.2010.02.006 [DOI:10.1016/j.soildyn.2008.01.001]
13. Hardin, B., O., (1985). Crushing of soil particles, Journal of Geotechnical and Geoenvironmental Engineering, 111, p. 1177-1192. doi.org/10.10610733-9410(1985)111:10(117) [DOI:10.1061/(ASCE)0733-9410(1985)111:10(1177)]
14. Nguyen, M., D., Yang, K., H., Lee, S., H., Wu, C., S., & Tsai, M., H., (2013). The behavior of non-woven geotextile-reinforced sand and mobilization of reinforcement strain under triaxial compression, Geosynthetics International, 20, p. 207-225. doi.org/10.1680/gein.13.00012 [DOI:10.1680/gein.13.00012]
15. Tizpa, P., Chenari, R., J., Fard, M., K., & Machado, S., L., (2015). ANN prediction of some geotechnical properties of soil from their index parameters, Arabian Journal of Geosciences, 8, p. 2911-2920. doi.org/10.1007/s12517-014-1304-3 [DOI:10.1007/s12517-014-1304-3]
16. Shahnazari, H., & Rezvani, R., (2013). Effective parameters for the particle breakage of calcareous sands: An experimental study, Engineering Geology, 159, p. 98-105. doi.org/10.1016/j.enggeo.2013.03.005 [DOI:10.1016/j.enggeo.2013.03.005]
17. Wang, X., Z., Weng, Y., L., Wei, H., Z., Meng, Q., S., & Hu, M., J., (2019). Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea, Engineering Geology, 261, p. 105274. doi.org/10.1016/j.enggeo.2019.105274 [DOI:10.1016/j.enggeo.2019.105274]
18. Feia, S., Sulem, J., Canou, J., Ghabezloo, S., & Clain, X., (2016). Changes in permeability of sand during triaxial loading: effect of fine particles production, Acta Geotechnica, 11, p. 1-19. doi.org/10.1007/s11440-014-0351-y [DOI:10.1007/s11440-014-0351-y]
19. Zhu, S., Z., (2003). The Theory of Triaxial Test and its Application, CEPP Press, Peking, p. 71-75.
20. Hyodo, M., Aramaki, N., Itoh, M., & Hyde, A., F., L., (1996). Cyclic strength and deformation of crushable carbonate sand, Soil Dynamics and Earthquake Engineering, 15, p. 331-336. doi.org/10.1016/0267-7261(96)00003-6 [DOI:10.1016/0267-7261(96)00003-6]
21. LaVielle, T., H., (2004). Liquefaction Susceptibility of Uncemented Calcareous Sands from Puerto Rico by cyclic triaxial testing, Ph.D. dissertation. Virginia Tech, Blacksburg, VA. Coop et al.
22. Hassanlourad, M., H., Salehzadeh, H., & Shahnazari, H., (2008). Dilatancy and Particle Breakage Effects on the Shear Strength of Calcareous Sands Based on Energy Aspects, International Journal of Civil Engineering, 6 (2), p. 108-119.
23. Wei, H., Z., Li, X., X., Zhang, S., D., Zhao, T., Yin, M., & Meng, Q., S., (2021). Influence of particle breakage on drained shear strength of calcareous sands, International Journal of Geomechanics, 21. doi.org/10.1061/(ASCE)GM.1943-5622.000207 [DOI:10.1061/(ASCE)GM.1943-5622.0002078]
24. Wu, Y., Li, N., Wang, X., Cui, J., Chen, Y., Wu, Y., & Yamamoto, H., (2021). Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea, Engineering Geology, 280. doi.org/10.1016/j.enggeo.2020.105932 [DOI:10.1016/j.enggeo.2020.105932]
25. Li, X., & Liu, J., K., (2021). One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction, Bulletin of Engineering Geology and the Environment, 80, p. 4049-4065. doi.org/10.1007/s10064-021-02160-2 [DOI:10.1007/s10064-021-02160-2]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.