Write your message
Volume 1, Issue 2 (3-2005)                   Marine Engineering 2005, 1(2): 1-12 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hoseini Amin S M, Taghizade Manzari M. **SIMULATION OF SLOSHING IN A SEMI - FILLED CONTAINER USING SPH METHOD. Marine Engineering 2005; 1 (2) :1-12
URL: http://marine-eng.ir/article-1-10-en.html
1- Sharif University of Technology
Abstract:   (18383 Views)

The motion of fluids within partially filled containers has been the subject of much study by scientists and engineers due, in large part, to its importance in many practical applications. For example, civil engineers and seismologists have actively studied the effects of earthquake-induced fluid motions on oil tanks and water towers. In recent years, aerospace engineers have been concerned with the effect of fluid sloshing within propellant tanks on the stability of aircraft, rockets, and satellites. All of these applications seek container designs which minimize the amplitude of fluid forces over a gain range of operating conditions. In this paper, an incompressible smoothed particle hydrodynamics (SPH) method is developed to numerically simulate viscous free surface flows in partially filled containers. The mass conservation and Navier-Stokes equations are solved as basic equations. The method uses a prediction–correction fractional step technique. In the prediction step, the temporal velocity field is integrated in time without enforcing incompressibility and in the correction step the resulting deviation of particle density is implicitly projected onto a divergence-free space to satisfy incompressibility through a pressure Poisson equation derived fr an approximate pressure projection. The proposed SPH method is used to simulate the sloshing of a omliquid wave with low amplitude under the influence of gravity. Initial shape of free surface is defined by one half of a cosine wave with low amplitude. The results of simulation are in good agreement with experimental and other modeling data.

Full-Text [PDF 345 kb]   (2055 Downloads)    
Type of Study: Research Paper | Subject: Ship Hydrodynamic
Received: 2010/07/14 | Accepted: 2013/10/19

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.