Volume 12, Issue 23 (9-2016)                   Marine Engineering 2016, 12(23): 15-23 | Back to browse issues page

XML Persian Abstract Print


1- Yasouj University
Abstract:   (5796 Views)

In this study, the results of a direct numerical simulation of turbulent drag reduction in a channel flow by hydrophobic coating at a nominal shear Reynolds number of Reτ = 180 are reported. Slip condition is imposed on the lower wall whereas the upper wall has no-slip condition. For this purpose, the use is made of a numerical simulation of three-dimensional, time-dependent Navier-Stokes equations for the incompressible flow of a Newtonian fluid. Finally, statistical quantities of turbulent flow (specifically the mean velocity profile, the root-mean-square of velocity fluctuations in different directions and the Reynolds shear stress are shown and discussed. The results confirm that by increasing the amount of slip on the lower wall, the bulk velocity passing through the channel increases. Also, the variation of root-mean-square of velocity fluctuations shows a similar behavior in the vicinity of the upper wall. But, their general trend is different in the proximity of the lower wall. Moreover, a change in the shape of the Reynolds shear stress profile from a minimum close to the lower wall towards a maximum close to the upper wall is observed.

Full-Text [PDF 1009 kb]   (4022 Downloads)    
Type of Study: Research Paper | Subject: CFD
Received: 2015/05/23 | Accepted: 2016/10/30

References
1. Watanabe, K. Yanuar, K. Okido, H and Mizunuma, (1998), Drag reduction in flow through square and rectangular ducts with highly water-repellent walls, JSME J., No. 96, 0213.
2. Kim, C.J. and Ho, C.M., (2002), Nano Turf: Nano- engineered Low Flow Friction Suefaces, NSF Nanoscale Science and Engineering Grantees Conference, Grant #: DMI-0103562.
3. Henoch, C., Krupenkin, T.N., Kolodner, P., Taylor, J.A., Hodes, M. S. and Lyons, A.M., (2002), Turbulent Drag Reduction Using Superhydrophobic Surfaces, 3rd. AIAA Flow Control Conference, June, San Francisco, California.
4. YU, Y.S. and WEL, Q.D., (2006), Experimental study on physical mechanism of drag reduction of hydrophobic materials in laminar flow, Chin. Phys. Lett., Vol. 23, No. 6, 1634.
5. You, D. and Moin, P., (2007), Effects of hydrophobic surface on the drag and lift of a circular cylinder, Phys. Fluids, Vol. 19, 081701.
6. Nouri, N.M., Sekhavat, S. and Mofidi, A., (2007), A review of theory and modeling of frictional drag reduction by surface coating, in The 11th National Conference on Marine Industries, Kish Island, Iran,. (In Persian).
7. Nouri, N.M. and et al., (2008), Formation of superhydrophobic surfaces to be used in frictional drag reduction, in The 1st National Conference on Applied Hydrodynamics, Tehran, Iran, (In Persian).
8. ‎Jahanmiri‎, M., A‎. Bahraini, (2011), Modern techniques for drag reduction of objects immersed in a fluid, Mech‎. ‎Eng‎., ‎Vol. 81, pp. 14-27‎‎.
9. Bernouli, D., (1738), Hydrodynamica, Strassburg,
10. Dubuat, L.G., (1786), Principes d'Hydraulique, Paris.
11. Coulomb, Ch.A., (1800), Memoires de l’Institut National de Science et des Arts: Sciences Mathematiques et Physiques, 3.
12. Girard, P.S., Memoires de la Classe Mathematique et Physique de l‘Institut de France, Mathematiques et Physiques Vol. 14, pp. 1813-1815.
13. Trostel, R., (1988), Gedanken zur Konstruktion mechanischer Theorien II, Technische Universität Berlin-Forcchungsbericht.
14. Atefi, Gh., (1991), Quer angeströmter drehender Zylinder bei kleinen Reynoldszahlen und bei Schlupf, Arch. Appl. Mech., Vol. 61, pp. 488-502.
15. Min, T. and Kim, J., (2004), Effects of hydrophobic surface on skin-friction drag, Phys. Fluids, Vol. 16, pp. L55-L58.
16. Min, T. and Kim, J., (2005), Effects of hydrophobic surface on stability and transition, Phys. Fluids, Vol. 17, pp. 108106.
17. Nouri, N.M. and Mofidi, A., (2010), Large-eddy simulation of turbulent flow over hydrophobic surfaces, Mech. & Aerospace J., Vol. 7, pp. 77-86, (In Persian).
18. Navier, L.M.H., (1823), Memoire sur le loi du mouvement des fluids, Memoires de l’Academie Royale des Sciense de l’Institut de France, Vol. 11, pp. 539.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.