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Abstract 
This paper discusses the disturbance velocity and potential as well as the total velocity 

formulation for non lifting potential flow problem. The problem is derived based on the Cauchy 
method formulation. The adding and subtracting back technique is used to desingularize the 
integral equations. The desingularized boundary integral equations are then discretized. The 
discretized equations can be evaluated using an arbitrary high order Gaussian quadrature or any 
other numerical integration method. Numerical examples for ellipse and Joukowski airfoil are 
calculated and compared with the analytical solution. It is shown that the usage of a 
desingularized Cauchy's formula in potential flow computation leads to an efficient and an 
accurate determination of the velocity and pressure on the body surface. 
Keywords: Boundary Element Method, Potential Flow, Cauchy Formula, Desingularization 
 
  
1. Introduction  

One of the effective tools in analysing 
potential flow about arbitrary bodies is 
the panel method originally presented by 
Hess and Smith [1]. The method utilizes 
a distribution of source density on the 
body surface and solves for the 
distribution necessary to meet the 
specific boundary conditions. Once the 
source density distribution is known, the 
velocities may be calculated. Since the 
panels are distributed on the boundary of 
the body, and in general, the boundary 
geometry does not have a global 
mathematical expression, the method is 
also called boundary element method 
(BEM). The advantage of using the 
BEM arises because there is no need to 
define a grid throughout the flow field 
and thus, it reduces the dimensionality of 
the boundary value problem. 
     Landweber and Macagno [2] 
developed a method, which differs from 
that of Hess and Smith mainly in the 
treatment of the singularity of the kernel 
and the procedure for obtaining 
numerical solution. Plane panels and 
quadratic panels are widely used to 

describe the geometry of the body to 
solve the boundary value problem [1, 3, 
4]. Furthermore, constant source density 
distribution is assumed over each panel. 
To improve the accuracy of 
approximation linear and quadratic 
functions are also developed [1]. 
    An arbitrary high order panel method 
which applies the Gaussian quadrature 
for descretization of the integral equation 
over the body has been proposed by 
Kouh and Ho [5]. In their method, the 
Gaussian quadrature points are 
calculated exactly from the mathematical 
definition of the body surface. The 
singularity involved in the equations and 
the approximation of the boundary 
geometry causes error in the numerical 
solution of the boundary element 
method. Regularization of the kernel for 
ease of computation has been studied in 
the past [4, 6, 7]. However, high 
accuracy of the numerical solution can 
be achieved using a proper Gaussian 
quadrature. By finding the limiting value 
of the kernel, the boundary integral can 
be carried out accurately. In addition, 
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Hwang and Huang [8] presented a non-
singular direct formulation of a boundary 
integral equation for potential flow using 
Green's identity. In their method, the 
singular behavior of the kernel is removed 
through subtracting and adding back 
technique from the Gauss flux theorem. 
   Cauchy's formula is widely used in the 
literature [9, 10] to solve potential 
problems in the field of engineering. 
These applications were mostly based on 
traditional boundary element method and 
local shape function. Among them, 
Chuang [11] developed a desingularized 
procedure for Cauchy's formula where a 
global Gaussian quadrature technique 
was applied to solve interior potential 
problem. 
    In this paper, the desingularized 
Cauchy's formula for exterior infinite 
domain is derived and discretized with 
global Gaussian quadrature. Moreover, 
disturbance and total complex potential 
and disturbance velocity of a uniform 
flow past a two dimensional body are 
formulated. The results of pressure 
coefficient obtained from the present 
numerical scheme for an ellipse and a 
Joukowski airfoil with different 
geometry are compared with the 
proposed analytical solution. 
 

2. Formulation  
Consider a two-dimensional body in 

an infinite domain R , subject to a 
uniform flow 0U  as shown in Fig. (1). 

 

 

Fig. 1- Domain R and boundary S 
 

An analytic function )(zχ in the domain 
R in terms of its boundary value on the 
boundary curve S  can be expressed 
using Cauchy's formula. Thus, for the 

exterior domain R , the Cauchy's formula 
is given by 
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and α  is the angle between two tangents 
to the contour R  at the point z .  Based 
on the `subtracting and adding back 
technique' [12], the Cauchy's formula 
can be written in the following form  
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Now, using   
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Eq. (2) reduces to Eq. (4) which is valid 
at any point inside the domain R , on the 
smooth boundary S  and even at the 
corner point on the boundary: 
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Eq. (4) has a finite value when 0z  
approaches z  on the boundary S . Hence,  
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The integral in Eq. (4) is a non singular 
integral and can be carried out using an 
arbitrary Gaussian quadrature with N 
Gaussian points: 
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where jχ  and jw  are the function value 
of )(zχ  and weighting factor, 
respectively, at Gaussian point jz . 
Eq. (6) is applicable on the boundary and 
inside the domain. Moreover, the value 
of function )(zχ  at the Gaussian points 
on the boundary can be computed 
accurately using Eq. (6) as discussed in 
the following sections. If the value of the 
function )(zχ  is known on the boundary, 
then the function may be easily and 
accurately computed at any point inside 
the domain. 
 

2.1 Discretization Using Gaussian 
Quadrature 

To solve the unknown part of )(zχ  on 
the boundary, the field point z  should be 
located on the boundary S . Then, 
integral Eq. (4) can be expressed in 
terms of the arc length of S  as  
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In Eq. (7), the limiting value of the 
integrand when 0z  approaches z  on the 
boundary is equal to 
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Since the limiting value of the integrand 
in Eq. (4) exists, this equation is a non-
singular representation of the boundary 
integral equation. Applying Gaussian 
quadrature with N Gaussian points 
which are also selected as the collocation 
points, to the integral Eq. (7), a system 
of complex equations can be obtained: 
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2.1.1 Formulation of Disturbance and 
Total Velocity Potential 

If the disturbance complex potential 
of a uniform flow past a body is given by 

)(zχ  in the z -plane, then  
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where the real and imaginary parts of 
dsdz /  represent the components of the 

tangent vector s  along the boundary 
curve S . 
Substituting Eq. (10) into Eq. (9) gives 
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After some manipulation on Eq. (11), 
Eqs. (12) and (13) are obtained in the 
following matrix form 
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jjijijij snjyyixxr  and,)()( −+−=  are 
the unit normal and tangential vectors at 
point j  respectively. 
   To compute the total velocity potential, 
the exterior incident flow potential iφ  
can be extended into the interior region; 
then, the interior region becomes the 
domain [8]. Using the Cauchy's formula 
for interior domain [4] and adding the 
incident potential to disturbance 
potential Eqs. (12) and (13) reduce to a 
versatile form for total complex potential 
as shown in:  
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where iΦ  is the total potential at the i th 
node , Iiφ  and Iiψ  are the incident 
velocity potential and stream function at 
the i th node respectively. 
 

2.1.2 Formulation of Complex velocity 
If the complex disturbance velocity of 

a uniform flow past a body is given by 
),(),()( yxvyxuzw i−=  in the z -plane, 

the desingularized Cauchy integral 
equation for complex velocity can be 
written as 
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discretizing Eq. (16) with Gaussian 
quadrature, one obtains  
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Additionally, the complex velocity )(zw  
may be expressed as 
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)(su  and )(sv  are the real and imaginary 
parts of the velocity along the boundary 
S , respectively, and can be written 
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Using Eq. (20), the kinematic boundary 
condition along the boundary S  might 
be specified as 
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Thus, the relation between velocity 
components along the boundary is 
obtained as: 
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Substituting Eqs.  (18) and (19) into Eq. 
(17) gives 
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Separating the real part and imaginary 
part of  Eq. (24) two sets of real 
equations are obtained 
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Substituting v  and 'v  from Eqs. (22) and 
(23) into Eqs. (25) and (26),  N2  
equations with N2  unknowns, namely, 

ju  and '
ju  are obtained 
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ijA  and ijB  are the same as in Eqs. (12) 
and (13). 
 

3. Numerical Examples 
The discretized form of the 

desingularized Cauchy formula is solved 
and simulated for two kind of body 
geometry. One is an elliptical cylinder 
and the other a Joukowski airfoil.  The 
discussion of simulation results are in 
the following sections. 

 

3.1. Uniform Flow past an Elliptical 
Cylinder  

The boundary of the elliptical 
cylinder is computed from a conformal 
mapping given by 
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and the complex potential ))(( θςΩ  on 
the boundary of the elliptical cylinder is 
given by 
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In the computational procedure, the 
Gaussian points are used as the 
collocation points, and the corresponding 
parameter θ  of the collocation points are 
computed using the Newton Raphson 
iteration technique. 
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where n  and )1( +n  denotes the n th and 
the )1( +n th iterations respectively. 

Now, the boundary conditions which are 
jj y−=ψ  and [ ] jj dsdy /' −=ψ  will be 

imposed at the collocation points. 
Finally, the complex disturbance 
velocity, jw , at collocation point js , for 

Nj ,...,1= : 
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and the pressure coefficient )( j
PC  at 

collocation point js , for Nj ,...,1=  is: 
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where U  is the velocity of the uniform 
flow. Based on this procedure, three 
different elliptical cylinders are chosen, 
corresponding to 5.0,3.0=c  and 7.0 . 
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Each elliptical cylinder has the major 
semi-axis and the minor semi-axis of 

c+1  and c−1  respectively. Moreover, 
the boundary of each elliptical cylinder 
is divided into four equal parts on which 
4, 8, 12, 16 and 30-points Gaussian 
quadratures are applied.  In addition, the 
root mean square errors for pressure 
coefficient, RMS, are calculated as 
follows;  
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where,  the pressure coefficient, 

exacypC , 
at the Gaussian points is computed based 
on the above procedure and 

numpC  is 
computed using proposed complex 
potential formulation and complex 
velocity formulation. N  is the number 
of Gaussian points in the entire length of 
the body surface.  
 

 
 

Fig. 2- Pressure coefficient vs. non-
dimensional length, Lx / , for ellipse with 

different c. 
 

 
Fig. 3- Pressure coefficient for a vertical 

ellipse with different c. 
 

   Fig. (2) shows the distribution of 
pressure  coefficient on the surface of an 
ellipse with varying c. It indicates that 
even with a few number of Gaussian 
points the results obtained from the 
proposed methods are very accurate. 
Root mean square error of pressure 
coefficient is depicted in Fig. (4). It is 
indicated that the velocity formulation 
gives more accurate results than the 
potential formulation. However, these 
results show that increasing the number 
of collocation points beyond a certain 
threshold does not significantly improve 
the accuracy of computation. 
    Fig. (4) also shows that the RMS error 
of pressure coefficients increase by 
increasing the value of c  for an elliptical 
cylinder. 
 

 
(A) 

 

 
(B) 

 
(C) 

 

Fig. 4- RMS of pressure coefficient, pC , for 
an ellipse; (A) c=0.3, (B) c=0.5, (C) c=0.7 
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3.2 Uniform Flow past a Joukowski 
Airfoil 

The mapping function which maps a 
unit circle to a Joukowski airfoil is given 
by 

 

)35()(
βθ

βθθς
ii

ii

ece
cece
−+

+−+=

 
where 0=β  for nonlifting case. 
 

 
Fig. 5- pressure coefficient, pC ,for 
Joukowski airfoil with different c. 

 

 
(A) 

 

 
(B) 

 

 
(C) 

 

Fig. 4- RMS of pressure coefficient, pC , for 
Joukowski airfoil; (A) c=0.3, (B) c=0.5, (C) 

c=0.7 

   The complex potential on the boundary 
of the airfoil and the computational 
procedure in this example is the same as 
that of the elliptical cylinder in the 
previous section. 
    In the numerical simulation, three 
different Joukowski airfoils are 
computed, corresponding to 5.0,3.0=c  
and 7.0 . The total arc length of the airfoil 
is divided into two equal parts on which 
4, 8, 12, 16, 30 and 50-points Gaussian 
quadratures are again applied. The 
pressure coefficient for a Joukowski 
airfoil is plotted in Fig. (5). It is shown 
that the numerical solutions are in good 
agreement with the analytic solution. 
However, since the thickness at the 
trailing edge of the Joukowski airfoil is 
zero, all BEM codes encounter 
numerical difficulties in the 
computation.   Fig. (6) shows the RMS 
error of pressure coefficient for 
Joukowski airfoil.  It indicates that the 
velocity formulation gives more accurate 
results than complex potential 
formulation.  
It also indicates that increasing the 
number of collocation points beyond a 
certain threshold does not significantly 
improve the accuracy of computation. 
 
4. Conclusions 

Desingularized Cauchy's formula for 
computation of two dimensional 
potential flows in an infinite domain is 
presented. In addition, based on the 
desingularized Cauchy's formula and 
Gaussian quadrature, the numerical 
schemes are developed for solving 
disturbance and total velocity potential 
as well as the complex velocity. 
     Numerical simulations show that the 
accuracy of the numerical solution 
obtained from the proposed numerical 
schemes are sensitive to the number of 
collocation points used in the Gaussian 
quadrature, but in general, the sensitivity 
can be reduced by increasing the number 
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of collocation points. Since the normal 
and tangential vectors and their 
derivatives at the collocation points are 
involved in the numerical solution, the 
boundary geometry is important in the 
numerical solution. While the equation 
of the total velocity potential is simpler 
than those of the velocity potential and 
the disturbance velocity, the use of the 
total velocity potential formulation 
reduces the computational procedure. 
    In addition, numerical simulations 
indicate that the numerical solutions for 
the pressure coefficient obtained from 
the complex disturbance velocity 
formulation are usually more accurate 
than those obtained from the complex 
disturbance or total potential. Numerical 
results for the disturbance and total 
velocity potential are usually of the same 
order. Since the equations of the total 
velocity potential are simpler than those 
of the disturbance velocity potential and 
the disturbance velocity, the use of the 
total velocity potential formulation 
reduces the computational procedure. 
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