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Abstract

This paper discusses the disturbance velocity and potential as well as the total velocity
formulation for non lifting potential flow problem. The problem is derived based on the Cauchy
method formulation. The adding and subtracting back technique is used to desingularize the
integral equations. The desingularized boundary integral equations are then discretized. The
discretized equations can be evaluated using an arbitrary high order Gaussian quadrature or any
other numerical integration method. Numerical examples for ellipse and Joukowski airfoil are
calculated and compared with the analytical solution. It is shown that the usage of a
desingularized Cauchy's formula in potential flow computation leads to an efficient and an
accurate determination of the velocity and pressure on the body surface.
Keywords: Boundary Element Method, Potential Flow, Cauchy Formula, Desingularization

1. Introduction

One of the effective tools in analysing
potential flow about arbitrary bodies is
the panel method originally presented by
Hess and Smith [1]. The method utilizes
a distribution of source density on the
body surface and solves for the
distribution necessary to meet the
specific boundary conditions. Once the
source density distribution is known, the
velocities may be calculated. Since the
panels are distributed on the boundary of
the body, and in general, the boundary
geometry does not have a global
mathematical expression, the method is
also called boundary element method
(BEM). The advantage of using the
BEM arises because there is no need to
define a grid throughout the flow field
and thus, it reduces the dimensionality of
the boundary value problem.

Landweber and Macagno [2]
developed a method, which differs from
that of Hess and Smith mainly in the
treatment of the singularity of the kernel
and the procedure for obtaining
numerical solution. Plane panels and
quadratic panels are widely used to
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describe the geometry of the body to
solve the boundary value problem [1, 3,
4]. Furthermore, constant source density
distribution is assumed over each panel.
To improve the accuracy of
approximation linear and quadratic
functions are also developed [1].

An arbitrary high order panel method
which applies the Gaussian quadrature
for descretization of the integral equation
over the body has been proposed by
Kouh and Ho [5]. In their method, the
Gaussian  quadrature  points  are
calculated exactly from the mathematical
definition of the body surface. The
singularity involved in the equations and
the approximation of the boundary
geometry causes error in the numerical
solution of the boundary -element
method. Regularization of the kernel for
ease of computation has been studied in
the past [4, 6, 7]. However, high
accuracy of the numerical solution can
be achieved using a proper Gaussian
quadrature. By finding the limiting value
of the kernel, the boundary integral can
be carried out accurately. In addition,
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Hwang and Huang [8] presented a non-
singular direct formulation of a boundary
integral equation for potential flow using
Green's identity. In their method, the
singular behavior of the kernel is removed
through subtracting and adding back
technique from the Gauss flux theorem.

Cauchy's formula is widely used in the
literature [9, 10] to solve potential
problems in the field of engineering.
These applications were mostly based on
traditional boundary element method and
local shape function. Among them,
Chuang [11] developed a desingularized
procedure for Cauchy's formula where a
global Gaussian quadrature technique
was applied to solve interior potential
problem.

In this paper, the desingularized
Cauchy's formula for exterior infinite
domain is derived and discretized with
global Gaussian quadrature. Moreover,
disturbance and total complex potential
and disturbance velocity of a uniform
flow past a two dimensional body are
formulated. The results of pressure
coefficient obtained from the present
numerical scheme for an ellipse and a
Joukowski  airfoil ~ with  different
geometry are compared with the
proposed analytical solution.

2. Formulation
Consider a two-dimensional body in
an infinite domain R, subject to a

uniform flow U, as shown in Fig. (1).

oy

Ué R/w\s .
S

Fig. 1- Domain R and boundary S

An analytic function ¥(z)in the domain

R in terms of its boundary value on the
boundary curve S can be expressed
using Cauchy's formula. Thus, for the
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exterior domain R , the Cauchy's formula
is given by

|k 2) = x(z,) .
27:1[5 1};5( )_l dz, )

z 0 z
where

{0 for zeR
k:

a for zeS

and « is the angle between two tangents
to the contour R at the point z. Based
on the ‘subtracting and adding back
technique' [12], the Cauchy's formula
can be written in the following form

|k 2(zy) = 2(2)
27Z'I|:E - 1i|Z(Z) = !szo

+ 1) ——dz, )

Zy —Z

Now, using

j ! dzy =ki  for z,eS (3
$Z0 2

Eq. (2) reduces to Eq. (4) which is valid
at any point inside the domain R , on the
smooth boundary § and even at the
corner point on the boundary:

~27iz(2) = {—Z (z0) =7 (Z)}dzo 4)

s Zy—z
Eq. (4) has a finite value when z,
approaches z on the boundary S . Hence,

lim £~ 2(2) . _ dx(z0)
02 zy—zZ dz,

zy=z

=z (@ O
The integral in Eq. (4) is a non singular
integral and can be carried out using an
arbitrary Gaussian quadrature with N
Gaussian points:
dz,w; ==2riy(z)

; —

Jor z#z, (6)
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where y, and w; are the function value

of y(z) and weighting factor,
respectively, at Gaussian point z .

Eq. (6) is applicable on the boundary and
inside the domain. Moreover, the value
of function y(z) at the Gaussian points
on the boundary can be computed
accurately using Eq. (6) as discussed in
the following sections. If the value of the
function y(z) is known on the boundary,
then the function may be easily and
accurately computed at any point inside
the domain.

2.1 Discretization Using Gaussian
Quadrature

To solve the unknown part of £ (@) on
the boundary, the field point z should be
located on the boundaryS. Then,
integral Eq. (4) can be expressed in
terms of the arc length of S as

—27iy(z(s) = | { .
for z,z,€8 (7)

Zy —Z

In Eq. (7), the limiting value of the
integrand when z, approaches z on the

boundary is equal to

. {z(zo () - ;c(Z(s))} dz,
2>z Zy—zZ ds
dy dz, d
_GX %20 _9X ®)
dz, ds ds

Since the limiting value of the integrand
in Eq. (4) exists, this equation is a non-
singular representation of the boundary
integral equation. Applying Gaussian
quadrature with N Gaussian points
which are also selected as the collocation
points, to the integral Eq. (7), a system
of complex equations can be obtained:
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(2, (s))—z(Z(s))} dzy

w.

N — 7 |d
DN EZANELE Uil L 1
jZI,jii Z] - Zi dS j ’ dS
=2riy,, i=L.,N (9

2.1.1 Formulation of Disturbance and
Total Velocity Potential

If the disturbance complex potential
of a uniform flow past a body is given by

7(2) in the z-plane, then

i

x(2(s)) = ¢(s) +iy(s)
z(s)=x(s)+iy(s)

And

dy d¢  .dy . . .
=T i =g +i

ds ds ds 4 v

dz dx .dy . ..

ds ds lds Y 10

where the real and imaginary parts of
dz/ds represent the components of the

tangent vector s along the boundary

curve S.
Substituting Eq. (10) into Eq. (9) gives

o (¢j_¢i)+i(l//j_l//i) ' . !
Z . (x/ _lyj)wj
Jj=1j#i (xj_xi)+l(yj_yi) ‘
(g +iy)w=-27i (¢, +iv,)

for i=1..,N (8]
After some manipulation on Eq. (11),

Egs. (12) and (13) are obtained in the
following matrix form

N N
Z(Aij‘//j) = Z(Bij(”j) - Wi¢i
j=1 j=1

for i=1,..,N 12)
N N i
Z(Av¢j) = _Z(Bij'/’j) Wy
j=1 j=1 i

for i=1,...,N (13)
where
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v..nm.
§
Az/ 2 W
T
N or.nm.
i
a,=2mm 3
j=Lj=i
v..nm.
it
Bl]_ 7 W
T
N pr.n.
_ jty
Bt/_ Z 2 W
j=Lj= Ty

T
the unit normal and tangential vectors at
point ;j respectively.

To compute the total velocity potential,
the exterior incident flow potential ¢,

=(x; =x)i+ (v, ~y)j, nyand s, are

can be extended into the interior region;
then, the interior region becomes the
domain [8]. Using the Cauchy's formula
for interior domain [4] and adding the
incident  potential to  disturbance
potential Egs. (12) and (13) reduce to a
versatile form for total complex potential
as shown in:

N
> (B,@,)=—wd, -27V¥,, (14

Jj=1
N
D (4,D,) =220, (15)
j=1

where @, is the total potential at the ith
node , ¢, and w, are the incident

velocity potential and stream function at
the i th node respectively.

2.1.2 Formulation of Complex velocity

If the complex disturbance velocity of
a uniform flow past a body is given by
w(z)=u(x,y) =(%.») jn the z-plane,
the desingularized Cauchy integral
equation for complex velocity can be
written as

4/E

w(z) - w(z) dz|
z—z ds | i
z, zy €8 (16)
discretizing Eq. (16) with Gaussian
quadrature, one obtains

—2riw(z) = j

S

w.dz,,

J

Y w(z) - w(z) dz| "

—2riw(z) = A
@) _/_IZ_I;# z—z ds|j !
AL - 17)
ds |, ds|,

Additionally, the complex velocity w(z)
may be expressed as

d tiy .
wz)=Z =PV ) - iv(x,y)
dz x —iy
(18)
and
dw_du v _ sy (19)
ds ds ds

u(s) and v(s) are the real and imaginary

parts of the velocity along the boundary
S, respectively, and can be written

u(s)=¢x +yy
wWs)=¢y —yx (20)
Using Eq. (20), the kinematic boundary

condition along the boundary S might
be specified as

V(5)n(s) = ()i + () ||y ()i + x ()]

dy
=2 21
> (21)

Thus, the relation between velocity
components along the boundary is
obtained as:

V(s) = 2= (u(s) +1) 22)
X

Substituting Eqgs. (18) and (19) into Eq.
(17) gives
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<)y mu) i V)
.igé-i{(xj _Xl-)+i(yj —yl_)}(xf +lyj)wj

+(u, —iv))w=-2ri(u, —iv,), (24)
Separating the real part and imaginary

part of Eq. (24) two sets of real
equations are obtained

N N
=3 (Ayv,) =D (Byu,)+wu,, (25)
j=1 j=l

ﬁ:(Ai/uj) = ﬁ(Bz/"j) WY, (26)

Substituting v and v' from Egs. (22) and
(23) into Egs. (25) and (26), 2N
equations with 2N unknowns, namely,
u, and u; are obtained

lc, fu, }=D, +wu, i=1..8 (@7)

B, Ju,}=F, +Gwu, i=1,.,N (28)
where
Y, Y,
CU__AU_'_BU and Dl_Aij_v
X X
J J
¥,
A, —B,
Xj
El-j = , o .
Y X Vi =X )i
Aii_Bij_'_wi[ 2 }
xj xi

x X;

y; X =X Y, ¥,
Fy=B; ——+w|————| G, ==
X

J
4, and B are the same as in Egs. (12)
and (13).

3. Numerical Examples

The discretized form of the
desingularized Cauchy formula is solved
and simulated for two kind of body
geometry. One is an elliptical cylinder
and the other a Joukowski airfoil. The
discussion of simulation results are in
the following sections.
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3.1. Uniform Flow past an Elliptical
Cylinder

The boundary of the elliptical
cylinder is computed from a conformal
mapping given by

c@)=e?+>  0<6<2x (29)
e

and the complex potential Q(g(6)) on

the boundary of the elliptical cylinder is
given by

1
Q@) =U {g(ﬁ) + E} (30)

In the computational procedure, the
Gaussian points are used as the
collocation points, and the corresponding
parameter & of the collocation points are
computed using the Newton Raphson
iteration technique.

NCD) 1)

where n and (n+1) denotes the nth and
the (n+1)th iterations respectively.

Now, the boundary conditions which are
w;=-y; and l/// =—[dy/ds]j will be
imposed at the collocation points.

Finally, the complex disturbance
velocity, w;, at collocation point s, for

j=1L..,N:

iy
w<:u<—iv<=dQ| :¢’ l//;’ (32)

o dz|j x; +iy,

and the pressure coefficient CY’ at
collocation point s, for j=1,...,N is:

oy vy ]
U2

where U is the velocity of the uniform

flow. Based on this procedure, three

different elliptical cylinders are chosen,

corresponding to ¢=0.3,0.5 and0.7.

Y = (33)
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Each elliptical cylinder has the major
semi-axis and the minor semi-axis of
l1+c¢ and 1-c¢ respectively. Moreover,
the boundary of each elliptical cylinder
is divided into four equal parts on which
4, 8, 12, 16 and 30-points Gaussian
quadratures are applied. In addition, the
root mean square errors for pressure
coefficient, RMS, are calculated as
follows;

L e et :

Jj=1 Pexact

where, the pressure coefficient, C,

at the Gaussian points is computed based

on the above procedure and C, is

computed using proposed complex
potential formulation and complex
velocity formulation. N is the number
of Gaussian points in the entire length of
the body surface.

Ezxact Sc;lution

S0F Numer. Sol. -
25k Exact Solution ------ |
l Numer. Sol. *
20 Ezact Solution —-—- _]
) 3 Numer. Sol. ©
a
e 5

Fig. 2- Pressure coefficient vs. non-
dimensional length, x / L , for ellipse with
different c.
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Fig. 3- Pressure coefficient for a vertical
ellipse with different c.
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Fig. (2) shows the distribution of
pressure coefficient on the surface of an
ellipse with varying c. It indicates that
even with a few number of Gaussian
points the results obtained from the
proposed methods are very accurate.
Root mean square error of pressure
coefficient is depicted in Fig. (4). It is
indicated that the velocity formulation
gives more accurate results than the
potential formulation. However, these
results show that increasing the number
of collocation points beyond a certain
threshold does not significantly improve
the accuracy of computation.

Fig. (4) also shows that the RMS error
of pressure coefficients increase by
increasing the value of ¢ for an elliptical
cylinder.

0.006 T T AT T
omplex Velocity —e—
0.005 - % Compfea: Patent:gf -]
0,004 N i
%’1 0.003 - \\ ~
= 0.002 \ e
AY
0.001 - \‘ -
0.0 - oo : SR i
L 1 L L L L
20 40 60 80 100 120
0.05
ag\\| ' ! fle:c Veloctt o
0.04F C’amp e Potential %
\
003F . ° -
52}
5 0.02 |- T
0.01 —
0.0 Pa—
] 1 1 1 1 1
20 40 60 80 100 120
(B)
1.0
' ! ! Complex Veleloci't L
08 Complex Potential --%--.
@ 0.6 I -
-
= 04} -
0.2 E
0.0 |- -
1 1 1 1
60 80 100 120

Fig. 4- RMS of pressure coefficient, C ,, for
an ellipse; (A) ¢=0.3, (B) ¢=0.5, (C) ¢=0.7
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3.2 Uniform Flow past a Joukowski
Airfoil
The mapping function which maps a

unit circle to a Joukowski airfoil is given
by

i0 i c
c(@)=e" +c—e” + " _ﬂ
i i
e +AicCc-—e
where =0 for nonlifting case.
-3 T T r
Ezact Solution
c=.3 Numer. Sol.
2k Ezxact Solution ------ E
Numer. Sol.  »
Ezact Solution ———
& -1k Numer. Sol. o |
U - . p=
1 »
-0.8 0.4 0 0.4 0.8
x/L
Fig. 5- pressure coefficient, C p ofor
Joukowski airfoil with different c.
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Fig. 4- RMS of pressure coefficient, C ,, for

Joukowski airfoil; (A) ¢=0.3, (B) ¢=0.5, (C)
c=0.7
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(35)

The complex potential on the boundary
of the airfoil and the computational
procedure in this example is the same as
that of the elliptical cylinder in the
previous section.

In the numerical simulation, three

different  Joukowski  airfoils  are
computed, corresponding to ¢=0.3,0.5
and 0.7 . The total arc length of the airfoil
is divided into two equal parts on which
4, 8, 12, 16, 30 and 50-points Gaussian
quadratures are again applied. The
pressure coefficient for a Joukowski
airfoil is plotted in Fig. (5). It is shown
that the numerical solutions are in good
agreement with the analytic solution.
However, since the thickness at the
trailing edge of the Joukowski airfoil is
zero, all BEM codes encounter
numerical difficulties in the
computation. Fig. (6) shows the RMS
error of pressure coefficient for
Joukowski airfoil. It indicates that the
velocity formulation gives more accurate
results  than  complex  potential
formulation.
It also indicates that increasing the
number of collocation points beyond a
certain threshold does not significantly
improve the accuracy of computation.

4. Conclusions

Desingularized Cauchy's formula for
computation of two  dimensional
potential flows in an infinite domain is
presented. In addition, based on the
desingularized Cauchy's formula and
Gaussian quadrature, the numerical
schemes are developed for solving
disturbance and total velocity potential
as well as the complex velocity.

Numerical simulations show that the
accuracy of the numerical solution
obtained from the proposed numerical
schemes are sensitive to the number of
collocation points used in the Gaussian
quadrature, but in general, the sensitivity
can be reduced by increasing the number
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of collocation points. Since the normal
and tangential vectors and their
derivatives at the collocation points are
involved in the numerical solution, the
boundary geometry is important in the
numerical solution. While the equation
of the total velocity potential is simpler
than those of the velocity potential and
the disturbance velocity, the use of the
total velocity potential formulation
reduces the computational procedure.

In addition, numerical simulations
indicate that the numerical solutions for
the pressure coefficient obtained from
the complex disturbance velocity
formulation are usually more accurate
than those obtained from the complex
disturbance or total potential. Numerical
results for the disturbance and total
velocity potential are usually of the same
order. Since the equations of the total
velocity potential are simpler than those
of the disturbance velocity potential and
the disturbance velocity, the use of the
total velocity potential formulation
reduces the computational procedure.
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