
 

 

J. of Marine Eng. Vol. 21, Iss. 46, 2025. (71-79)  
 

 
 

 
Journal of Marine Engineering 

 

Journal homepage: marine-eng.ir 

   
 

 

 

Depth control of an AUV robot using reinforcement learning (RL) 
 

Ali Hasanvand1 , Mohammad Saeed Seif2*   
 
1 Postdoctoral Researcher, Faculty of Mechanical Engineering, Sharif University of Technology, Ali.hasanvand@sharif.edu 
2 Professor, Faculty of Mechanical Engineering, Sharif University of Technology, Seif@sharif.edu 

 

ARTICLE INFO  ABSTRACT 

Article History: 

Received: 13 May 2025 

Last modification: 16 Jul 2025 

Accepted: 17 Jul 2025 

Available online: 17 Jul 2025 

 Nowadays, the use of advanced methods for controlling the motion of underwater 

robots has led to improved efficiency and enhanced operational quality. In this 

research, a method based on reinforcement learning has been developed for the depth 

control of AUV robots. This method learns the robot's movement pattern based on a 

reward criterion and makes the optimal decision for motion and control surface 

adjustments accordingly. Depth control using reinforcement learning improves the 

robot's performance and selects the most optimal control signal based on the robot's 

conditions and rewards. In this study, a linear dynamic model of pitch motion was 

used to develop the depth control model. For each desired state, the scenario is 

repeated 500 times to update the Q-matrix during simulation. Subsequently, by 

assigning rewards to each signal, the optimal value is determined. After completing 

the scenario, the optimal value from the Q-matrix is selected to determine the control 

signal for the fin. The results showed that the use of reinforcement learning 

significantly enhances the quality of the AUV robot's control system, resulting in 

minimal overshoot and oscillation in performance. 
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 (RL)با روش یادگیری تقویتی  AUVکنترل عمق عملیاتی ربات زیرسطحی 
  

  *  2محمد سعید سیف،   1علی حسنوند
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   چكيده    اطلاعات مقاله 

 تاریخچه مقاله:
 23/02/1404: تاریخ دریافت مقاله

 25/04/1404: مقاله اصلاح تاریخ 

 26/04/1404: تاریخ پذیرش مقاله

 26/04/1404انتشار مقاله: تاریخ 

روش از  استفاده  رباتامروزه  حرکات  کنترل  برای  پیشرفته  و  های  راندمان  بهبود  سبب  زیرسطحی  های 

ها شده است. در این پژوهش با استفاده از روش یادگیری تقویتی برای حرکت  افزایش کیفیت عملیات آن 

روشی توسعه داده شده است که براساس معیار پاداش الگوی حرکت ربات را یاد    AUVهای  عمقی ربات

کند. کنترل حرکت  گرفته و براساس آن بهترین تصمیم را برای حرکت و کنترل سطوح کنترلی اتخاذ می

براساس   بهینهعمقی  و  میگردد  ربات  عملکرد  بهبود  سبب  تقویتی  را  یادگیری  کنترلی  سیگنال  ترین 

کند. در این پژوهش از مدل دینامیکی خطی حرکت  ها اتخاذ میای ربات و پاداشبراساس شرایط لحظه 

مرتبه سناریو تکرار    500پیچ برای توسعه مدل حرکت عمقی استفاده شده است. برای هر هدف مطلوب  

به روزرسانی شود. در ادامه با ارائه پاداش به هر سیگنال مقدار    Qسازی ماتریس  تا در حین شبیه  شودمی

می مشخص  ماتریس  مطلوب  از  بهینه  مقدار  انتخاب  با  سناریو،  پایان  از  پس  سیگنال  Qگردد.  مقدار   ،

کمک شایانی    گردد. نتایج نشان داد که استفاده از روش یادگیری تقویتیکنترلی برای بالک مشخص می

کند تا جایی که مقدار فرارفت و نوسان کمی در عملکرد  می  AUVهای  به کیفیت سیستم کنترل ربات

 مشاهده شد. 
 

   نوع مقاله:
 مقاله پژوهشی

 
  کلمات کلیدی:
 یادگیری تقویتی

 کنترل عمق

 AUVربات  
Underactuated 
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 مقدمه   - 1

روش  از  حرکات    یبرا  1یتیتقو  یریادگی  یهااستفاده  ربات کنترل 

دل  AUVزیرسطحی   در  روش  نیا  ییتوانا  لیبه   یریادگی ها 

مح  نهیبه  یهااستیس قرار    ایپو  ی هاط یدر  توجه  مورد  نامعلوم،  و 

پژوهش است.  داده  ریاخ  یهاگرفته  که  نشان   RL  یهاتمیالگوراند 

مس  یبرا  توانندیم  2DQNو    Learning-Qمانند   عمق   ری کنترل  و 

AUV ها با دقت بالا استفاده شوند. به عنوان مثال، استفاده ازDQN  

تا    ریمس  تعقیب  یخطا  تواندیم روش  سهمقای  در  ٪30را   یهابا 

 . [1]  کاهش دهد کیکنترل کلاس

روش  ، یگرید  قاتیتحق  در مانند    Actor-Criticبر    یمبتن  یها از 
3PPO  کنترل حرکات    ییو کارا  یداری بهبود پا  یبراAUV    استفاده

ا است.  دلروش  نیشده  به  مد  ییتوانا  ل یها  عمل   یفضا  تیریدر 

 ترقیکنترل دق  یبرا  ،یریادگی  ندیو کاهش نوسانات در فرآ  وستهیپ 

AUV  .روشها مناسب هستند  PPO  یمبتن   یهابا روش  سهیدر مقا  

بهتر عملکرد  ارزش،  مح  یبر  اغتشاشات   زینو  یدارا  یهاطیدر  و 

همچن[2]  دارد تأک  نیا  ن،ی.  ترک  کند می  د یمطالعه  با    RL  بیکه 

همگرا  تواندیم   AUV  ی کینامید  ی هامدل را   تم یالگور  ییزمان 

 کاهش دهد. 

از    یاصل  یهااز چالش  یکی استفاده  ها، AUVکنترل    یبرا  RLدر 

است.   ی طولان ی و زمان محاسبات یآموزش یهاداده اد ی به حجم ز ازین

ا  یبرا برخ  نیحل  روش  یمشکل،  از  مانند   یبیترک  ی هامحققان 

Transfer Learning    وImitation Learning  کرده اند. استفاده 

اس  دهد مینشان    ات مطالع با   توانیم   ، یانتقال  یریادگیاز    تفادهکه 

داد و   میتعم  یواقع  طی را به مح  سازهیدر شب  دهیدآموزش  یهامدل

نت داد  ی کیزیف  یهاشیآزما   یهانهیهز  جه،یدر  کاهش  ا[3]  را    ن ی. 

همچن ترک  کندمی  شنهادیپ   نیپژوهش  کنترلرها  RL  بیکه   یبا 

پ  س  تواندیم   4نیبشیمدل  شرا  ستمیعملکرد  در    ی اتیعمل  طیرا 

 بهبود بخشد.  دهیچیپ 

روش از  استفاده  چندعاملهاخیراً،  تقویتی  یادگیری  برای   5های 

های اکتشافی و نظارتی  در مأموریت AUV کنترل هماهنگ چندین

روش این  است.  گرفته  قرار  توجه  بینمورد  همکاری  امکان   ها 

AUVمی فراهم  را  میها  و  در کنند  کارایی  بهبود  به  منجر  توانند 

نقشه  مانند  پیچیده  وظایف  شوند. انجام  دریا  بستر  از  برداری 

برالگوریتم  مبتنی  بهتری توانند  می MADDPG  6های  هماهنگی 

کنندAUVبین ایجاد  روش  ها  با  مقایسه  در  تکو  دقت  های  عامله، 

 
1 Reinforcement Learning (RL) 
2 Deep Q-Networks 
3 Proximal Policy Optimization 
4 MPC 
5 Multi-Agent RL 
6 Multi-Agent Deep Deterministic Policy Gradient 

تعیین پیش  از  مسیرهای  ردیابی  در  دارندبیشتری  .  [4]  شده 

این روش از  استفاده  تا  ها میهمچنین،  را  انرژی   ٪20تواند مصرف 

  زیرسطحی پیچیدهمدت  های طولانیکاهش دهد، که برای مأموریت

 [.5] است

های تحقیقاتی نوظهور، ترکیب یادگیری تقویتی گر از زمینهیکی دی

ها با مصرف انرژی  AUVبرای کنترل  7های عصبی اسپایکی با شبکه

روش این  است.  سیستمبهینه  به  بیشتر  شباهت  دلیل  به  های ها 

می بیولوژیکی،  انجام عصبی  بالاتری  کارایی  با  را  محاسبات  توانند 

کاربردهای   برای  و  هستند.  مناسب  یناگهان دهند  های SNNتر 

ها را در مواجهه  AUV توانند زمان پاسخگوییمی RL دیده باآموزش 

موانع   نشده  با  بینی  ب  ٪40تا  پیش  همچنین، [6]  خشندببهبود   .

]پژوهش ][  7های  معماری[  ۸و  تأثیر  بررسی  مختلف  به  های 

پرداختند و نتایج نشان داد که    RL های عصبی در ترکیب باشبکه 

از به  می LSTM 8استفاده  رفتارهای  AUVتواند  یادگیری  در  ها 

 .های پویا کمک کندپیچیده در محیط

به در  حاضر  پژوهش  یادگیری نوآوری  چارچوب  یک  کارگیری 

عمیق ربات تقویتی  عمقی  حرکت  هوشمند  کنترل  های  برای 

از    زیرسطحی استفاده  استسطوح  با  با .  کنترلی  روش،  این  در 

دی مدل  خطیترکیب  پیچنامیکی  حرکت  الگوریتم شده  -Q و 

Learning  به کنترل  بهینه  سیاست  و پیشرفته،  خودکار  صورت 

داده بر  میمبتنی  یادگیری  محیطی  یک  های  طراحی   الگویشود. 

نه که  تطبیقی  و پاداش  انرژی  مصرف  بلکه  عمق،  خطای  تنها 

به نیز  را  دینامیکی  بهینهپایداری  همزمان  میصورت    کند سازی 

رباتمی دسته  این  کنترل  سیستم  به  شایانی  کمک  داشته تواند  ها 

از تکرار  باشد ای برای هر سناریو و مرحله   500. همچنین، استفاده 

صورت همگرا، دقت و کارایی کنترلر را در به Q روزرسانی ماتریسبه

قادر است    رویکرد. این  بخشدبهبود می  زیرسطحیشرایط غیرخطی  

، بهترین سیگنال کنترلی را برای دینامیکی بدون نیاز به مدل دقیق  

 نشان دهد و همچنین  های کلاسیک کنترلنسبت به روش  ها الکب

محیطیانعطاف اغتشاشات  برابر  در  بیشتری  مقاومت  و  از   پذیری 

 .دهدنشان  خود

 

 معادلات حرکت –  2

 همزمان   حل  به  یرسطحیز  ربات  کی  حرکت  معادلات  یساز هیشب

 برای  . دارد  اجیاحت  شده  کوپل   یرخط یغ   لیفرانسید   معادله  شش

شود. می تعریف مختصات دستگاه دو همواره دینامیکی مدلسازی

 است. حرکت بی و زمین به  متصل مرجع قاب در شده فیکس اولی

پارامترها، برای.  باشدمی ربات بدنه به متصل دومی  دستگاه  کاهش 

می بویانسی  مرکز  در بدنه به متصل مختصات گرفته  نظر    شود در 

 
7 Spiking Neural Networks (SNN) 
8 Long Short-Term Memory  [
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شکل  [9-11] تعریف   هایمختصات دستگاه نسبی وضعیت (1). 

 دهد. را نشان می شده

 
های شش  دستگاه مختصات های تعریف شده و شماتيک حرکت -1شكل 

 [12درجه آزادی ]

مهم در توان حرکت پیچ را که یک حرکت  با استفاده از فرضیات می

ربات عمق  می  underactuatedهای  کنترل  سایر  بحساب  از  آید 

کرد.  پ   ی ساز  ی با خط  حرکات جدا   ، AUVربات    چ یمعادله حرکت 

میمدل   استخراج  پیچ  حرکت    بر   حاکم  همعادل.  شوددینامیکی 

های  ( شامل ترم1( ارائه شده است. معادله )1پیچ در رابطه )  حرکت

نیروی  و  دینامیک جسم صلب  بازگرداننده، ممان هیدرودینامیکی، 

 .ها استبالک

(1) ( )Y q q u disI M q M q M M u + + + + =  

 

اینجا   در  که 
YI    محور حول  جرمی  اینرسی  ، Yممان 

qM جرم

پیچ،  حرکت  افزوده 
qM،پیچ حرکت  ضریب Mدمپینگ 

 uاغتشاش خارجی،   disضریب عملگر کنترلی،   uMبازگرداننده،  

و  کنترل  ,سیگنال  ,q q    پیچ مقدار  و  سرعت  شتاب،  ترتیب  به 

هستند. در ادامه بعد از حل مدل دینامیکی در هر گام زمانی، برای  

عمل شده   سینماتیکی  معادلات  براساس  پیچ  زاویه  میزان  محاسبه 

 ( بیان میگردد. 2دله )است. مقدار تغییرات زاویه پیچ به صورت معا

(2) q =  
 

می که  است  مناسبی  استاندارد  فرمت  حالت  فضای  پل  مدل  تواند 

و کنترل سیستم باشد. فرمت عمومی فضای    مناسبی بین دینامیک

 ( است.3حالت به مانند معادله )

(3 ) 
x Ax Bu E

y Cx

= + +

=
 

 

آن   در  حالت    xکه  متغیرهای  بردار   ،  بردار  زمانی  نرخ 

  A،  بردار خروجی    y،  ورودی کنترلر    u،  حالت

سیستم  ورودی  B،  ماتریس  ماتریس    Cو  ماتریس 

مدل    خروجی فرمت است.  در  پیچ  حرکت  دینامیکی 

 ( بیان میگردد.4ماتریسی به شکل )

(4 ) 
1

2

0 1 0
dis

q u

dis
Y qY q Y q

M M uM
qq

I MI M I M







   
       

= + +       
       + + +   

 

(5 )  1 0C =  

 

شکلی  به  پیچ  مقدار  بالک،  از  استفاده  با  ربات،  عمق  کنترل  برای 

به سمت مقدار مطلوب حرکت کند.    شود که عمق ربات کنترل می

سرعت   نزدیکی  در  ربات  حرکت  فرض  نهایت   1با  در  برثانیه،  متر 

معادله حرکت عمقی ربات با استفاده از روابط سینماتیکی به شکل  

 شود. ( بیان می6معادله )

(6 ) 
( )

0
0

sin

t

z

z zdt z

=

= +
 

 

اینجا   توان با حل مدل باشد و میای ربات میعمق لحظه  zکه در 

را در هر گام  پیچ، مقدار عمق  آزادی حرکت  دینامیکی یک درجه 

زمانی تخمین زد. برای مدلسازی از مشخصات دینامیکی یک نمونه 

ضرایب   از  است.  شده  گرفته  بهره  واقعی  زیرسطحی  ربات 

برای مدلسازی دینامیکی در این   AUV isimiهیدرودینامیکی ربات  

است   شده  استفاده  )13] مقاله  جدول  در  ضرایب 1[.   )

 هیدرودینامیکی این ربات ارائه شده است.

 

 
 AUV ISIMI [13]ربات  -2شكل 

 

 AUV ISIMI [13]ضرایب هيدرودیناميكی ربات  -1جدول 

unit value parameter  

kg.m2 7.5 𝐼𝑦  1 

kg.m2 0.09 𝑀𝑞̇ 2 

kg.m2s -5 𝑀𝑞 3 

kg.m2 -1.4 𝑀𝜃 4 

kg.m2 -0.8 𝑀𝑢 5 
( 1)nx

( 1)n( 1)p( 1)q

( )n n( )n p

( )q n
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 یادگيری تقویتی برای کنترل عمق  – 3

اصالی یاادگیری ماشاین   هاایشیوهیکی از   روش یادگیری تقویتی

از طریاق تعامال باا محایط و دریافات  9است که در آن یک عامال

گیارد تاا رفتاار بهیناه را بارای بازخورد )پاداش یا جریمه( یاد مای

رساایدن بااه اهااداف بلندماادت انتخاااب کنااد. باارخلاف یااادگیری 

بار   RLخورده نیااز دارد، برچسبهای ازپیششده که به دادهنظارت

گیری استوار های تصمیمسازی سیاستی آزمون و خطا و بهینهپایه

هاای بازیاست. این روش در کاربردهاای متناوعی مانناد رباتیاک،  

های ، مادیریت مناابع و سیساتمAlphaGo)مثال)  هوش مصانوعی

 RL های کلیادی. الگوریتمگرفته استگر مورد استفاده قرار توصیه

باه عامال کماک   Policy Gradient و Q-Learning، DQN مانناد

های هاای پیچیاده باا عادم قطعیات، تصامیمکنند تا در محیطمی

 .هوشمندانه بگیرد

یک روش یادگیری ماشاین  یادگیری تقویتیان شد،  همانطور که بی

از طریاق تعامال باا محایط، اقاداماتی را  است که در آن یک عامل

کناد. هادف دهد و بازخورد )پاداش یا جریمه( دریافت میانجام می

 بهینه است که حداکثر پاداش تجمعای عامل یادگیری یک سیاست

 باا اساتفاده از را در طول زمان به دست آورد. ایان فرآیناد معماولاً

 .شودمدلسازی می( 7در رابطه ) معادله بلمن مفاهیم ریاضی مانند

(7) 
,

( ) ( ) ( , , ) ( )
a s r

V s a s p s r s a r V s  


  = +    

 

-را نشاان مای  π تحات سیاسات  s مقدار حالات s(πV(  که در آن

 .تابع انتقال محیط است p(s′,r∣s,a)  است و تخفیففاکتور    γ دهد،

، عاماال جاادولی از Q-Learning مانناادتاار هااای پیشاارفتهدر روش

 a دهنده کیفیت انجام عمالگیرد که نشانرا یاد می Q(s,a)  مقادیر
بر اساس معادله   Q روزرسانی مقداراست. الگوریتم با به   s در حالت 

 .زیر کار میکند

(۸) 
( , )

( , ) ( max ( , ) ( , ))

Q s a

Q s a r Q s a Q s a 



 + + −
 

 

-عامال اجاازه مایها به  نرخ یادگیری است. این روش   α که در آن

های پیچیده، سیاست بهینه را حتی بادون مادل دهند تا در محیط

 .دقیق محیط یاد بگیرند

هاای اساسای اسات ، کنترل عمق یکی از چالشAUVهای  در ربات

اقیانوس انجام شود. یادگیری   واقعیکه باید با دقت بالا و در شرایط  

حال تعامل مستقیم با محیط، یاک راه  بابا قابلیت یادگیری    تقویتی

 عامال مؤثر برای طراحی کنترلرهای هوشمند است. در ایان روش،

مانناد یی هااکند و با دریافات حالتعمل می AUV عنوان کنترلربه

 
9 agent 

 های سنسورهای فشار، اقدامعمق فعلی، زاویه حمله، سرعت و داده

و   محایطد.  کناانتخااب می  را  هاالکمناسب را برای تنظیم زوایای ب

کند که مبتنای بار را محاسبه می ، پاداشAUVدینامیکی معادلات 

خطای عمق )تفاوت باا عماق مطلاوب( و مصارف انارژی اسات. باا 

یااد  تدریج یک سیاست بهیناهعامل به  RLهایاستفاده از الگوریتم

رسااند، بلکاه تنها خطاای عماق را باه حاداقل میگیرد کاه ناهمی

کناد. ایان نی جریان آب را نیز جباران مینوسانات و تغییرات ناگها

 برای ربات های زیرسطحی که ساطوح کنترلای دارناد،ویژه  روش به

تر در برابار اغتشاشاات تر و مقااومند منجر به کنتارل دقیاقنتوامی

 .دنشو

 

 آناليز الگوریتم و تحليل عملكرد  – 4

الگاوریتم برای بررسی عملکرد الگاوریتم و روش شناسای، عملکارد  

تحت مقادیر متفاوت نرخ یادگیری و اپیزود بررسای و تحلیال شاد. 

های انباشته شده برای تمامی مقادیر فرارفت، زمان نشست و پاداش

ها بررسی شدند. در جدول زیر مقادیر نامبرده شده برای نارخ حالت

 یادگیری و اپیزودهای مختلف ارائه شده است. 

 

 تحليل عملكرد الگوریتم  -2جدول  
Settling 

Time (s) 
Overshoot 

(%) 
Cumulative 

reward (-) 

Learning 

rate 

no. 

Episode  
7.46 2.3 13521 0.05 500 
3.82 1.1 15030 0.1 500 
5.16 2 13733 0.15 500 

12.22 27 -8620 0.2 500 

- -  0.1 1 

5.26 3.4  0.1 100 

3.34 5.2  0.1 200 

3.82 4.2  0.1 300 

3.8 1  0.1 400 

3.82 1.1  0.1 500 

2.86 3.3  0.1 600 

 

دهد کاه افازایش مقادار اپیازود مقادار ( نشان می2مقادیر جدول )

دهاد و باا فرارفت را افزایش داده اماا زماان نشسات را کااهش مای

شاود. بهتارین حالات کاهش مقدار اپیزود این رویکرد برعکس مای

ای کااه انتخاااب شااده اساات بااه گونااه 500انتخاااب اپیاازود باارای 

پارامترهای مورد نظر در محدوده مناسبی قراردارناد. بارای تحلیال 

شاود در نرخ یادگیری نتایج برای مقادیر باالا سابب ناپایاداری مای

دهاد. صورتی مقدار کم این پاارامتر نارخ همگرایای را کااهش مای

، 1/0ئه شده است که مقدار ( ارا3های انباشته شده در شکل )پاداش

 باشد.  مقدار بهینه می
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76 

( نیز به صورت نموداری مقدار پااداش انباشاته 5( و )4های )شکل 

دهاد باا دهد. شکل نشان میشده براساس تعداد اپیزود را نشان می

شود. با افازایش افزایش مقدار اپیزود، پاداش انباشته شده زیادتر می

 Qمقدار اپیزود، الگوریتم زماان بیشاتری را بارای آماوزش جادول  

کند و بهبود عملکرد امری طبیعی اسات اماا باا افازایش سپری می

مقدار اپیزود میزان محاسبات افزایش یافته و بهبود عملکرد تا مقدار 

اپیزود  500مشخصی قابل دسترسی است. برای همین منظور مقدار 

 ش انتخاب شد.برای آموز

 
 های انباشته شده براساس نرخ یادگيریپاداش -3شكل 

 

 
 1تعقيب عمق های انباشته شده براساس تعداد اپيزود پاداش -4شكل 

 متر

 
  2تعقيب عمق  های انباشته شده براساس تعداد اپيزودپاداش -5شكل 

 متر

 نتایج و بحث –  5

بخش مدل  در  مرور  به  قبلی  الگوریتم  های  و  روش  دینامیکی، 

الگوریتم سازی  پیاده  از  پس  شد.  پرداخته  تقویتی  در یادگیری  ها 

های مورد نظر صورت گرفته است. ، شبیه سازی2023بستر متلب  

یادگیری  در شبیه سازی نرخ  پژوهش  این  تخفیف   1/0های  نرخ  و 

مرتبه در   500در نظر گرفته شده است. به ازای هر نقطه هدف    5/0

ها انجام شد. ل داخلی با استفاده از مدل دینامیکی شبیه سازیسیک

مقدار دهی شده است تا    Qپس از شبیه سازی وضعیت در ماتریس  

یک    Qبتواند بهترین عمل را در شرایط مشابه داشته باشد. ماتریس  

ماتریس دو بعدی بوده است و به شکلی تعریف شده است که سطر  

مق آن  ستون  و  کنترل  سیگنال  لحظهآن  عمق  بوده دار  ربات  ای 

است. در هر سناریو ربات با استفاده از الگوریتم تقویتی سعی دارد تا  

برای  پاداش  یک  عمل  هر  ازای  به  کند.  تعقیب  را  مطلوب  نقطه 

ماتریس   در  و  است  شده  گرفته  نظر  در  جایگذاری   Qالگوریتم 

انباشتگی  براساس  دیده  آموزش  الگوریتم  نهایت  در  است.  گردیده 

ها در فاز آموزش، برای بخش تصمیم گیری و تولید سیگنال اداشپ 

می استفاده  لحظهکنترلی  عمق  براساس  ربات  مقدار شود.  ای 

ماتریس   از  را  کنترلی  می  Qسیگنال  شیوه  انتخاب  این  به  و  کند 

ها  سیگنال کنترلی تعیین گردیده است. در ادامه نتایج شبیه سازی

 ارائه شده است.

شکل ) در  سازی  ۸-6های  شبیه  نتیجه  برای   500(  داخلی  سیکل 

ماتریس   عمق  Qآموزش  است.   3تا    1های  برای  شده  ارائه  متر 

قسمت در  که  آموزش همانطور  برای  شد،  ارائه  نیز  قبلی  های 

شبیه   500وریتم  الگ این  در  است.  شده  تکرار  سازی  شبیه  مرتبه 

و    20ها  سازی تصادفی  صورت  به  تصمیمات  به   ۸0درصد  درصد 

شرایط  بتواند  الگوریتم  تا  اند  شده  انتخاب  بهینه  مقدار  صورت 

 جدیدتری را تجربه کند و آموزش بیشتری را داشته باشد. 

 

 ترم 1سيكل تعقيب عمق  500نتيجه آموزش  -6شكل 
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 متر 2سيكل تعقيب عمق  500نتيجه آموزش  -7شكل 

 

 متر 3سيكل تعقيب عمق  500نتيجه آموزش  -8شكل 

 

 ی وجود برخ ی دهندهنشان (۸–6)  یهاشده در شکلارائه  ینمودارها

پراکندگ  و  روند    هاینوسانات  که    Q  سیماتر  یریادگیدر  هستند 

ناش رو  ی عمدتاً  در   یدرصد  20  یسازیتصادف  کردیاز  اقدامات 

ا  ندیفرآ است.  اکتشاف   یاستراتژ  نیآموزش  اصل  اساس  بر  -که 

به  یطراح   یبرداربهره عمدشده،  اقدامات    یصورت  انتخاب  امکان 

در طول    نهیربهیغ  م  یریادگیرا  فضا  کندیفراهم  بتواند  ربات    ی تا 

بهحالت را  اقدامات  و  گها  از  و  کرده  کشف  کامل  در   رکردنیطور 

نت  یریجلوگ  یمحل  یهانه یبه در  برخ  جه،یشود.   ی هاکل یس  یدر 

منجر   یآموزش(، اقدامات تصادف   هی اول  احلدر مر  ژهیو)به  یسازه یشب

س اعمال  م  ی کنترل  ی هاگنالیبه  ا  شوند ینادرست  امر   نیکه 

 دایمتر( نمود پ   3تا    1در عمق مطلوب )  ی مقطع  یصورت خطاهابه

اکند یم با  م  ن ی.  نشان  نمودارها  روند  که  همانطور  با    دهد،یحال، 

م  شیافزا از  تکرارها،  و   کاسته  هایپراکندگ  نیا  زان یتعداد  شده 

مقاد  ییهمگرا سمت  اابدییم  ش یافزا  نهیبه  ر یبه  نشان رفتار    ن ی. 

الگور  دهدمی بهره  جیتدربه  تمیکه  فاز  به  اکتشاف  فاز   ی برداراز 

. ابدیی، دقت کنترلر بهبود مQ  سی ماتر  یروزرسانبهو با    افتهیانتقال  

 ستند،ین  ستمیشده نه تنها ضعف سمشاهده  یهایپراکندگ   ن،یبنابرا

بخش فرآ  یضرور  یبلکه    کیبه    یابیدست  یبرا  یریادگی  ندیاز 

 .شوندیمحسوب م  یقیمقاوم و تطب یکنترل استیس

در ادامه نتیجه کنترل عمق برای عمق های  پس از آموزش الگوریتم

 ( ارائه شده است.12-9متر در شکل های ) 3تا  1

 

 

سيگنال کنترل و عمق لحظه ای ربات با الگوی تقویت شده  -9شكل 

 متر 3برای تعقيب عمق 

 

 

سيگنال کنترل و عمق لحظه ای ربات با الگوی تقویت شده  -10شكل 

 متر 1برای تعقيب عمق 

 

 
سيگنال کنترل و عمق لحظه ای ربات با الگوی تقویت شده  -11شكل 

 متر 2برای تعقيب عمق 
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7۸ 

 

 کنترل عمق ربات با استفاده از کنترل یادگيری تقویتی  -12شكل 

 

بار   یکنتارل مبتنا  ساتمیکاه س  دهدینشان م  هایسازهیشب  جینتا

را   AUV  یبا دقت بالا توانسته است حرکات عمقا  یتیتقو  یریادگی

کند. با توجه باه  تیریمد یخوبمتر( به 3تا   1مختلف )  یهادر عمق

به   یریادگی  ندیفرآ  لیعمق پس از تکم  یشده، خطاارائه  ینمودارها

مطلاوب   یداریاو ربات قادر به حفا  پا  افتهیکاهش    یزیمقدار ناچ

 یدیکل  یاز دستاوردها  یکیاست.    ریمتغ  یکینامید  طیدر شرا  یحت

ی رضروریو کاهش استفاده غ   یمصرف انرژ  یسازنهیپژوهش، به  نیا

 ناه،یبه  یهااستیس  یریادگیبا    شدهیطراح  تمیبالک است. الگور  از

و از حرکات   کندیم  هابالک  هیزاو  میتنها در مواقع لازم اقدام به تنظ

اجتنااب  شاود،یم  یکه منجر به اتلاف انرژ  یناگهان  یهاتند و پرش

داده، بلکاه   شیرا افازا  ساتمیس  ییتنها کارانه  کردیرو  نی. ادینمایم

رباات شاده  یاتیاعمل دامناه شیو افازا  مصرف انارژیباعث کاهش  

باا مادل   یتیتقاو  یریادگیاب  یاکاه ترک  دهدینشان م  جیاست. نتا

کنتارل   یماؤثر بارا  حالراه  کیا  چ،یحرکت پ   شدهیخط  یکینامید

 .شودیمحسوب م یرسطحیز  یهامصرف رباتو کم قیدق

 

 نتيجه گيری– 6

توسعه    نیا به  نو  کیپژوهش   ی ریادگی بر    یمبتن  نیچارچوب 

به  یبرا  یتیتقو عمق  نهی کنترل   پرداخته   AUVیهاربات  یحرکت 

الگور از  استفاده  با  طراح Q-Learning تمیاست.    ستم یس  کی  یو 

از جمله دقت کنترل عمق،   یمختلف  یارهایپاداش هوشمند که مع

انرژ پا  یمصرف  نظر م  یک ینامید  یداری و  کنترلر   کی  رد،یگیرا در 

طراح  یقیتطب کارآمد  است  یو  نتاشده  نشان   هایسازه یشب  جی. 

ا  دهدیم نه  نیکه  قادر به کاهش خطاروش  به م  یتنها   زانیعمق 

مقا  یتوجهقابل در  بلکه  روش  سهی است،  کلاس  ی هابا   کیکنترل 

 یرخطیغ   طیو شرا در شرایط پیچیده یدارتری، عملکرد پاPID مانند 

 ی تکرار برا  500  ی ط Q سیماتر  ی روزرسان. بهدهد یاز خود نشان م

را   نهیبه  استیبه س  یی و همگرا  قیعم  یریادگی امکان    و،یهر سنار

ا است.  کرده  کاربردها  ژهیوبه  کردیرو  ن یفراهم  که   ی اتیعمل  یدر 

دق  عیسر  یی پاسخگو  ازمندین تغ  قی و  هستند،   ی طیمح  راتییبه 

 .کند ارائه عملکرد مناسبی   تواندیم

 ط، یبا مح  میاز تعامل مستق  یریادگی  ییکنترلر هوشمند با توانا  نیا

شرا  تواندیم دارا  انوسیاق  ی واقع   طیدر  قطع  یکه    ی هاتیعدم 

  یهاک  استفاده از بال  ن، یعمل کند. علاوه بر ا  یخوباست، به  یفراوان

  داری به حرکات پا  یابیامکان دست  تم، یالگور  نیبا ا  بیدر ترک  یکنترل

حت جر  یرا  حضور  م  یقو  یآب   یهاان یدر  آسازد یفراهم  در    نده، ی. 

حوزه   نیا  توانیم به  را  کنترل   یگری د  یهاچارچوب  مانند 

جهت(    بیترک)   AUV  یچندبعد و  گروهی  ایعمق  چند   هدایت 

تعم همچن  میربات  ا  ن،یداد.  د  نیادغام  با   ی هاکیتکن  گریروش 

توسعه   تواند یم  PPO  ا ی  DDPGمانند    قیعم  یریادگی به  منجر 

انعطاف  یحت  یکنترل  یهاستم یس و  ا  رتریپذقدرتمندتر    ن یشود. 

 سطحیریز  یهاربات  رد کنترلربهبود عملکدر جهت    یپژوهش گام 

افزا مأمورآن  ی هاتیقابل  ش یو  در    تحقیقاتی و    یاکتشاف   ی هات یها 
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