شیب‌سازی دو بعدی هیدرودینامیک دریاچه ارومیه برای تعیین بالعوامل کلیدی

آقای مهدی نیکی

1. دانشجوی کارشناسی ارشد سازه‌های هیدرولیکی، دانشگاه صنعتی خواجه نصیرالدین طوسی
2. استاد دانشکده عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی
3. استاد اسیاد ملی اقیانوس شناسی

چکیده
دریاچه ارومیه یکی از بزرگ‌ترین و جذاب‌ترین مکان‌های طبیعی و گردشگری است که را از سایر دریاچه‌های جهان متفاوت می‌سازد. احداث سیستم‌های کنترل این دریاچه می‌تواند باعث تغییر قابل توجهی بر رفتار و اتفاقات طبیعی آن داشته باشد. تغییر احتمال شرایط آب‌گیری و گردش‌های طبیعی دریاچه و همچنین صدها سال است که دریاچه ارومیه دو بعدی به صورت دو بعدی در سطح اجسام آب و غلیق MIKE21 به عنوان یکی از سیستم‌های سایر مقادیر پلاکت شود. در این تحقیق، مدل دو بعدی هیدرودینامیک دریاچه توسط نرم‌افزار MIKE21 در حوزه دو بعدی در سطح اجسام آب و غلیق جریان دریاچه در یک محل شاخه در شرایط مختلف محیطی تعیین شده است. سیستم پیشرفته تریالی از انواع موجود در این دو بعدی در حوزه دو بعدی در سطح اجسام آب و غلیق جریان دریاچه در حوزه دو بعدی در سطح اجسام آب و غلیق جریان دریاچه در حوزه دو بعدی در سطح اجسام آب و غلیق MIKE21

کلمات کلیدی: دریاچه ارومیه، هیدرودینامیک، هیدرولیکی، نرم‌افزار

Two-dimensional simulation of Urmia Lake hydrodynamics for indicating the flow regime

Abstract
The Urmia Lake has distinctive nature, hydrodynamic and environmental properties that single out that from the other lakes in the world. Construction of Shahid Kalantari causeway can cause significant effects on natural regime of the lake. It may affect on environmental biology, hydraulic, water circulation regime and This paper deals with hydrodynamics of the lake. Two-dimensional surface simulation has been done with MIKE21 program. Flow regime and relative effects of parameters influencing that has been investigated. Results from this model when simulating normal condition, has been found to present a good correlation with field data as level fluctuations and velocity range. For that it seems that using 2D model for hydrodynamic is suitable but calibration with field data is needed for its approval.

This model shows that the wind input as the main environmental parameter influencing the flow regime in the Lake and for that it is important object for defining design parameters.

Keywords: Urmia (oroomieh/orumieh/orumyeh) Lake / numerical modeling / hydraulic / hydrodynamic / MIKE21 software

سال سوم/ شماره ۴/ خرداد ۱۳۸۵

37
۱- مقدمه
دریافت‌های ارمایی با وسعت حدود ۱۵۰۰ کیلومتری در شمال غرب کشور قاره گرفته و جایگاه آبریز آن ۱۳۷۱ درصد سطح ایران را شامل می‌شود. طول دریاچه بطور متوسط ۱۳۵ کیلومتر و عرض آن بین ۱۵/۵ تا ۳۰ کیلومتر و عمق متوسط آن در مناطق عمیق ۶ متر تخمین زده می‌شود. بر این اساس حجم متوسط آن بین ۱۲ تا ۳۲ میلیارد مترکوب به ترتیب در زمان‌های کم‌آبی و بارندگی پایدار می‌تواند به‌نمی‌رسد. [۱]. این دریاچه از سال ۱۳۵۸ از احیا میانکنی‌ایل شرقی‌گیری به دو بخش شمالی (۳۸ درصد) و جنوبی (۶۲ درصد) تقسیم شده و در حال حاضر تنها یک آبخور دریاچه دریافت‌های ارمایی از اهمیت خاصی برخوردار است و چنین مطالعاتی می‌تواند به‌عنوان یادگاری برای سایر مطالعات وابسته، مناسب مطالعات کیفیت آب و محیط زیست دریاچه در نظر گرفته شود. در ۱۵ سال اخیر مطالعات به‌خصوص میانکنی‌ات و اثر آن بر الگوی جریان دریاچه بیشتر مورد توجه قرار گرفته است.

۲- موروری بر مطالعات گذشته
به‌طور کلی مطالعات صورت گرفته در زمینه هیدرولیک و هیدرودینامیک دریافت‌های ارمایی را می‌توان به دو بخش اصلی تقسیم نمود. یک گروه مطالعاتی که به‌منظور تعیین جنبه‌های طراحی میانکنی‌ات اهداف صورت گرفته و از آن تا سال ۱۳۷۱ بیشتر به آن توجه شده است [۲–۳]. به‌خصوص تحقیقاتی به‌صورت پایان‌نامه‌های دانشگاهی به‌عنوان مطالعات کیفیت آب و محیط زیست دریاچه معمولاً در جریان مطالعات، میانکنی‌ات یا همان‌که فقط بیان آبی دریاچه را با نظر قرار داده و به دلیل ورود درصد مهم درودآور و بارندگی‌ها به جنوب (حدود ۴۸ درصد) باراک یک‌طرفه آب از جنوب به شمال دریاچه را محیط دانسته و نتیجه‌گیری‌هایی مبنی بر آن داشته‌اند و دیگر مطالعاتی که مدل‌سازی به‌ساده معادلات به‌نیای حاکم بر جریان [۸].

(مانند پیوستگی و ممتنع) و تحلیل عدید مساله با در نظر گرفتی فرضیات و ساده‌سازی‌های صورت گرفته است. در انجام فرضیات و نتایج تعادل از این مطالعات به‌طور مختصر بیان می‌شود.

در مجموعه مطالعاتی که بین سال‌های ۱۳۷۱ تا ۱۳۷۳ انجام شده جنبه‌های مختلف هیدرولیک و هیدرودینامیک دریافت‌های مردو بررسی گرفته و چنگانی تاثیر میانکنی‌ات با تغییر عناصر فیزیکی و شیمیایی آب دریافت‌های در بخش‌های شمالی و جنوبی آن ارزیابی شده است. در این مطالعات دستگاه را به عنوان عامل تعیین کننده از شکل‌گیری جریان تلقی شده و داده‌ها به داده‌های دیگر باپلگنکت مکملی به مدل ساخته شده با نرم‌افزار MIKE21 اعمال شده است. نتایج ارائه شده توسط این مطالعات بیشتر جنبه‌های طراحی میانکنی‌ات را بیان می‌کند [۴].

در تحقیق در سال ۱۳۸۱ به فرض باعث مدل ترینی عامل جریان‌ساز، از روش عادی به یک مدل دومی ابتدا سطحی بر اساس معادلات ترکوست و ممتنع در تغییر برتگی‌های گردش آب ناشی از با پایان‌نامه‌های نویسندگی در این مطالعات می‌توان به کم آب بودن ضرب اطفال یا در سرعت جریان و تعیین الگوی جریان از این آثار کرده [۵]

در تحقیق دیگری در سال ۱۳۸۳ با در نظر گرفتی آمار ۱۰ ساله رودخانه‌ای آجی چای، سیمینه، ورد و رزبین روود همچنین نوسانات با تریانگولیه است خارج آمده با موضوع میانکنی‌ات فصلی و استخراج آماده فصلی از آماده‌سازی الگوی الگوی جریان که در نرم‌افزار MIKE21(HD) در یک میانکنی‌ات از شریف غربی و بدون در نظر گرفتی جرایح دریافت‌های بسته آمده است. در نتیجه این تحقیق احداث میانکنی‌ات در الگوی جریان موتر بوده و الگوی جریان فصلی بیشتر در جهت ورش با داشته مدل ترکیبی [۸].

۲۸

سال سوم، شماره ۴، تابستان ۱۳۸۵

انجمن مهندسی دریایی ایران

نشریه مهندسی دریایی
در مجموعه مطالعات دیگر که بیشتر به منظور تعیین پارامترهای طراحی و بررسی روش‌هایی برای تبدیل نمودار شرایط دریچه به قلب از احتمال مبناگر دریچه ویدرودینامیک دریچه در جنین حالت هندسی مختلف برای مبناگر، مورد مطالعه قرار گرفته است.

با تحلیل نتایج مدل‌های هندسی از این ابزار باید شدگی اضافی برای نامن ارتقاء بین آب شمال و جنوب دریچه بررسی شد. همچنین پارامترهای طراحی نظری برای آب و سرعت‌های جریان در شرایط حداکثر تعیین شده است.

مدل عدید استفاده شده در مطالعات هیدرودینامیک، مدل HD مدل MIKE21 از نرم‌افزار MIKE21 می‌باشد. در این مدل سایزی نهایی شرایط با برای تحلیل جریان استفاده که در هنگام جریان به صورت فرضی و در امتیاز ورود برای تشکیل شده است [2]

3- هدف‌سازی

مور مطالعات قبلی بیانگر است که این مطالعات عمدها بر اساس اهداف خاص طراحی انجام شدهاند و این در حالی است که هنگام آنها (مثلاً برای عمدها بر اساس شرایط بالاتر از شرایط واقعی در نظر گرفته شدها مدل‌های قبلی به دلیل کمبود اطلاعات میدان، نتایج استانداردهایی مطابق با نهایی و محدود شده‌اند. بنابراین سال‌های 1365-67 و 1367-69 که بررسی آماری اطلاعات آن زمان انجام می‌شود، سپس تایید شده که از این مطالعات به دنبال بررسی و تغییر جریان دریچه شیب‌سازی برای بررسی شرایط معمول دریچه در پیک زمان محدود بیشتر یا برای انتخاب پارامترهایی برای در نظر گرفتن شرایط حREAL دریچه و محاسبات طراحی مبتنی بر جریان کاربرد خواهد داشت.

4- روش کار

دولت دیویستی می‌تواند هم در سطح و هم در مقطع دریچه باکر بهره‌مند گسترش سطح دریچه و پراکندگی مصب رودخانه‌های ورودی به آن و
سطح آزاد امکان ایجاد سه‌پوش‌های هیدرولیک و پیشبینی‌های پیش‌بینی در برخی این سوی سطح خاک را را دارد. سایر کناره‌های آخرین قابلیت سطح (فرض همگن در عمق) است. را دارد ما باید. با این مدل برای هیدرولیک سواحل و اقیانوس‌شناسی هیدرولیک محسوب می‌نماید که روش تفاضل محدود در حل معادلات حاکم و مدل (NHD-FM) استفاده می‌کند.

در مدل سازی هیدرودینامیکی می‌توان عموماً زیر را در نظر گرفت:

1. ممکن موجود و وارد شده به محیط
2. نش اتصال‌های کف 3. نش اتصال‌های باد در رودخانه‌ای چگونه که از روش متوسط محدود در حل معادلات حاکم و مدل روش تفاضل محدود استفاده می‌کند.

معادلات حاکم در این مدل برای هیدرودینامیکی است

\[
\frac{\partial \xi}{\partial t} + \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y} = \frac{\partial d}{\partial t}
\]

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \phi)}{\partial x} + \frac{\partial (\rho \psi)}{\partial y} = 0
\]

\[
\frac{\partial \phi}{\partial t} + \frac{\partial (\phi \psi)}{\partial x} + \frac{\partial (\phi \phi)}{\partial y} = -\frac{1}{\rho} \left[\frac{\partial}{\partial x}(\phi \tau_{xx}) + \frac{\partial}{\partial y}(\psi \tau_{yx}) \right] - \rho g \nabla \phi
\]

\[
\frac{\partial \psi}{\partial t} + \frac{\partial (\phi \psi)}{\partial x} + \frac{\partial (\phi \phi)}{\partial y} = -\frac{1}{\rho} \left[\frac{\partial}{\partial x}(\phi \tau_{yx}) + \frac{\partial}{\partial y}(\psi \tau_{yy}) \right] - \rho g \nabla \psi
\]

که در آن:

سال سوم/شماره 2/تایبادان 1385
شیب‌سازی دو بعدی هیدرودینامیک برای ارگونومی برای عینک‌های جریان

نگاره‌های درونی دریابه‌ای

لامر است برای کارهای دقت‌برتراندازگیری در محل دریابه صورت گیر. تا به‌دست آمده این انطباقات، استفاده از انطباقات ارگونومی و تصحیحات متنداز

که می‌تواند تا حدی بپردازد نمونه‌ای از اگوی باد منطقه به‌اشتغال نباید است.

- تغییرات زمانی بارش موثر (تغییر بارندگی) به‌صورت متوسط، ماهیانه انطباقات ارگونومی، برای دیواره‌های مجاور دریابه (آب‌وهوایی و شرایط) برداشته شده‌اند [13].

- تغییرات زمانی دیگر رودخانه مهم دریابه که به‌شیرین حجم آب ورودی به دریابه را تغییر می‌دهد، می‌تواند به‌صورت متوسط، ماهیانه انطباقات ارگونومی، مستقر در رودخانه‌ها و با تصحیح و همبستگی امکان پذیر می‌شود [12].

- برای هیدرودینامیک دریابه که داده‌های مرجع [12] که کامل‌ترین انطباقات موجود در این زمینه است و ترکیب‌های آن برای ۱۷۶۵ متر از سطح دریابه آزاد می‌باشد استفاده شده است.

- میزان دل مساله کل دریابه با در نظر گرفتن ۴ جزئی بزرگ جنوبی (کبوتان، اشک، اسپری و آرزو) که برای مدل‌سازی از شبکه‌های مربوط به ۳۰۰ متر استفاده شده است.

- در این رابطه، با توجه به محاسبات منطقه‌ای، همگن فرضی این است. لازم برای مشخص کردن این انطباقات، با استفاده از مشخصات‌های کمتر از ۱۰۰ گرم‌سانتی‌تریمکب، نهایتی در محدوده‌های مربوط به دما، در دسترس است. در این‌جا اصلی‌ترین دریابه مدل‌سازی با استفاده از قدل بی‌پرو بوده است. سرعیت جریان در نقاط مختلف دریابه در مدل هیدرودینامیک، معیار حساسیت سنجی پارامترها در مسیر لرککه نشانه‌های مورد پردازش رودخانه‌ها صورت‌گیرنده شده است. در این تحقیق، علاوه بر
شیب‌سازی دو بعدی هیدرودینامیک دریاچه ارومیه برای تعیین‌گر جریان

همانطور که در این جدول دیده می‌شوید در محدوده وزش بادهای دریاچه، سال مینا (حدود 1537 متر) اتیلن اباد

مرتباً و در نقاط مختلف مشاهده می‌شود که در

مدلهای HD و NHD مقاومت بسته به ماه‌های اباد

مش در مقادیر سرعت جریان تأثیر کمی دارند. مدل‌ها

نسبت ضریب تغییری برای مقاومت بسته به

حساسیت. ضریب اصطکاک با نیز نقش عمده‌ای در

تغییر سرعت جریان دارد. البته مقادیر 0.05/0.1 ضریب

حداکثر قابل استفاده بوده و محدوده توصیه شده

این ضریب بین 0.05 تا 0.1 برای بادهای با سرعت

کمتر از 20 متر به ثابت می‌ماند. در این محدوده تأثیر

تغییر این ضریب در سرعت جریان، در حالی بود که

تاریکه نتایج تغییر ضریب اصطکاک با و آب

در سرعت جریان با تحقیق اشکال شده در مرجع [5] در

شیب‌سازی داده حساسیت سنجی شده هم‌خوانی

نتایج را نشان می‌دهد.

بنابراین برای تعیین مقادیر نزدیک به واقعیت این

پارامترها کلیه پرونده مدل به مقادیر اندازه‌گیری‌های

همزمان سرعت باد و جریان در دریاچه لازم به نظر

می‌رسد. ضمن اینکه ورد این پارامترها به صورت متری

در سطح دریاچه بحثی مقدار ثابت در کل دریاچه

می‌باشد. در نتایج کار تأثیر داشته باشد. با توجه به

شیب‌زا و کمیت اطمینان می‌باشد برای انتخاب

مقدار این پارامترها در مدل‌سازی جریان

استفاده از توصیه‌های سازنده نرمال و مقادیر توصیه

شده در نظر گرفته شد.

بنابراین در این تحقیق در مدل‌های NHD و HD سال

مینا (1313 m^3/sec) 27/29 برای مقاومت بسته به دیل

حسیست کانتر مدل نسبت به ضریب شزگی (لازم به

ذکر که کالی‌سنتریسیس مدل مشابه به کمک

اطلاعات هزمان سرعت باد و جریان در مرجع [4] مقدار 29 برای این ضریب تعیین نموده که با کنترل

تغییر آن بین 27 تا 39 در مدل تحقیق حاضر و

DHJ کم تأثیر بود. از توصیه‌ای استفاده شد. و

تغییرات مناسب با سرعت باد [11] برای ضریب

شیب‌سازی با گام آپه که مقدار نوسان‌ها منطقی تر از یک

ضریب ثابت به‌طور مستقل استفاده شده است.

5- نتایج شیب‌ساز

خودجویی‌های تند در سال شاخص برای نقاط

مختلف دریاچه کنترل شده است. نتایج بدست آمده از

آبان تا اکتبر 1991 (در زمان همکاری

مدل‌ها) برای دو نقطه نمونه در شکل‌های 3 تا 6 نشان

داده شده است.

بررسی تغییرات سرعت در سراسر دریاچه نتایج زیر را

نشان می‌دهد:

1- سرعت متوسط‌گیری شده جریان در بخش عمدای

از دریاچه کمتر از 0.02 متر بر ثانیه بوده است. این

نقاط در نزدیکی اسپارتاگر بوده. به‌لطف 1 متر بر

ثانیه می‌رسد و ماکزیمم سرعت در دریاچه در این

نقاط دیده می‌شود. این سرعت با محدوده سرعت‌های

جریان اندام‌گیری شده در نزدیکی میانگیر در سال

بدست آمد، انطباق قبولی نشان می‌دهد.

2- جهت عمومی جریان جز در سواحل، کناره‌های

میانگیر و نزدیک جزایر جنوبی به‌صورت شمال و

جنوب به‌دست می‌آید.

3- سرعت جریان در فاصله زمانی اواسط ماه‌ها بکثر

(مهم‌تر) تا اواسط ماه دسامبر (آذرماه) به کمترین

مقدار خود رسید. در واقع تغییرات سرعت جریان

متناسب با تغییرات سرعت باد به‌دست می‌آید.

May-4 نمودار دکل به نشان می‌دهد در ماه‌های

به سمت شمال و سایر ماه‌ها به سمت جنوب شرقی

است. این شکل تغییر خطای تصور جریان عمومی جنوب

به شمال به دلیل دیگری به جنوب دریاچه

است.

5- تغییرات نرخ حاصل از محاسبات مشابه تغییرات تراز

اندازه‌گیری شده در دریاچه [9] به‌دست می‌آید. اختلاف

موج‌های بین دو مقدار که در حد 0.2758 متر است

بیشتر به‌دلیل فرض تراز متوسط دریاچه (تراز اولیه

1725/617 متر) برای ابتدای محاسبات می‌باشد.
به‌عنوان مهندسی دریایی ایران

در ماه‌های May و Jun تراز شمال به‌سیله می‌شود. بیشتر بودن تراز جنوب دریاچه در اکثر زمان‌های سال به ورود رودخانه‌ها و این افزایش دریاچه منطقی به نظر می‌رسد.

همچنین در مواقعی از سال اختلاف تراز بین شمال و جنوب دریاچه دیده می‌شود. این اختلاف حداکثر در مدت 4 روز و به مقدار حداکثر 20 سانتی‌متر است. در این نوسانات تراز، بیشتر ماهای تراز بیشتر در جنوب و

![نمودار 1](image1)

شکل 1-نمودار سرعت و گل جریان برای نقطه‌ مرکزی بالای ایجاد دریاچه (حداکثر سرعت 8/0 متر بر ثانیه و جهت عمومی جریان شمال و جنوب قرار می‌یابد.)

![نمودار 2](image2)

شکل 2-نمودار سرعت و گل جریان برای نقطه مرکزی در جنوب دریاچه (حداکثر سرعت 15/0 متر بر ثانیه و جهت عمومی جریان شمال و جنوب می‌یابد.)

![نمودار 3](image3)

شکل 3-نمودار تغییرات عمق آب در مدل HD در قسمت بالایی نمودار تغییرات تراز در سال میان از اندازه‌گیری در دریاچه ارومیه (1) و محاسبه (2) مقایسه شده است. در سامت راست روزگاری اختلاف تراز دریاچه بین شمال و جنوب تغییر می‌شود. (نقاط انتخاب شده در نقطه‌ با عمق اولیه 6 متر نسبت به تراز میزان 1275 متر از سطح دریاچه از ایجاد قرار دارند. به‌عبارت دیگر عده‌ 6 در محور قائم مناطق تراز 1275 می‌یابد.)
۶- عوامل موثر بر جریان و تأثیر نسبی آن در دریاچه ارمیه

در مطالعات گذشته عوامل جریان ساز در دریاچه ارمیه به صورت نخله آب رودخانه ها اختلاف درجه حرارت و شوری آبی رودی (غلطت) تبخر، باد، جریان آب چشم های کف دریاچه بین شده (۴۹) در این قسمت می خواهیم تأثیر هر یک از عوامل فوق را در شرایط مختلف محیطی (حالات معمول دریاچه در سال میانه) بر روی مدل دو بعدی بررسی نماییم. اثر دیگر رودخانه ها، تبخر و باد در مدل ساخته شده قابل تحلیل می‌باشد و به دلیل نبود اطلاعات کافی میدانی اثر اختلاف حرارت آب‌های ورودی و چشم‌های کف دریاچه را - علی‌رغم اینکه امکان مدل کردن آن را در زمان دارد - نمی‌توان مورد بررسی قرار داد. همچنین به دلیل فرض همگنی در این مدل تأثیر اختلاف غلطت دیده نمی‌شود. به این منظور مدل‌های ساده شده‌ای به صورت زیر تهیه و اجرا گرددند:

۱- مدل بدون رودخانه‌ها با باد و بارش موثر

۲- مدل بدون باد با اثر رودخانه‌ها و بارش موثر

مقایسه نتایج سرعت حاصل از این مدل‌ها برای یک کسل در حالات مختلف محیطی دریاچه در پک نقطه نمونه در جنوب دریاچه در شکل‌های ۷ و ۸ نشان داده شده است. نمودار پیوسته سرعت در نقاط دیگر نیز نتایج مشابه دارد.

این نمودارها نشان می دهد که عمده ترین عامل ایجاد جریان در دریاچه ارمیه باد است. به صورتی که با حذف باد و وجود عوامل دیگر حداقل سرعت جریان در نقطه نمونه به ۱ میلی متر بر ثانیه می‌رسد. جریان‌هایی در اثر تبخر و دیگر رودخانه‌ها ایجاد می‌شوند که نوسانات آن نسبت به سرعت ناشی از باد ناجیز است. اثر دیگر رودخانه‌ها و بارش موثر در دریاچه را نمی توان بطور واضح ماهیت کرد و تغییرات نمودار با وجود یا نبود آنها بسیار نزدیک به نمودار تغییرات حالت واقعی با اثر كل عوامل جریان ساز بدلیست می‌آید.

شکل ۶- نمودار گل‌چرچیان ماهانه برای مرکز بازنشسته در سال میانه از مدل دو بعدی HD
نتیجه‌گیری

1- در شرایط معاف عوامل مختلف بوجود آورده جریان در یک سال نمونه (خطی که در زیر به صورت افقی مشاهده می‌شود) نمودار تغییرات سرعت جریان در مدل بدون سرعت با است. این نمودار تغییرات جنی در دارد و حداکثر سرعت در آن به 1 میلی‌متر بر ثانیه می‌رسد.

7- تغییرات تراز

با توجه به تغییرات تراز حاصل از محاسبات و تراز واقعی دریاچه و حدود سرعت پدیده آباد از مدل و اندازه‌گیری در دریاچه به نظر می‌رسد استفاده از مدل دوبعدی برای مدل‌سازی جریان در سطح دریاچه بتواند به لحاظ مقدار سرعت تناسبی نمایش دهد و روابط پیوسته توجه بدهد تا مسعود.

2- مدل سازی، دوبعدی HD جهت عمومی جریان را به‌صورت شمال و جنوب برای به‌بخش عدم‌ها از دریاچه تشکیل می‌دهد.

3- در مدل دوبعدی، جهت عمومی جریان در باشدو، میانگری، شمال و جنوب شرقی دیده می‌شود.

4- تغییرات تراز دریاچه به‌دست آمده از مدل دوبعدی با تغییرات تراز واقعی دریاچه همخوانی مناسبی دارد.

8- تحقیق و قدردانی

از جناب آقای مهدی تودی مجرى محتمل طرح شهید کلانتری و جناب آقای مهندس پرهامی مدیرعامل محترم شرکت خدمات مهندسی ایرانیان که با اجرای دادن نتایج برخی مطالعات قبیل صورت گرفته در دریاچه ارومیه کمک شایانی در انجام این تحقیق داشته‌ایم قدردانی می‌نماییم.

9- منابع

13-MOFFATT & NICHOL Engineers (Jan 2005). Hydrodynamic modeling tools and techniques. South bay salt pond restoration project

16-www.wheather.ir (Iranian metrological organization website)

3-Tarh-e-Noandishan Consulting Company (Feb 2004). Formal investigations of hydraulic in the Urmia Lake. (In Persian)

8-Papers of the Urmia Lake causeway seminar (2003). Tehran University. (In Persian)

11-DHI (2003). MIKE 21 Coastal Hydraulics and Oceanography Nested Hydrodynamic Module Reference