دوره 19، شماره 38 - ( 2-1402 )                   جلد 19 شماره 38 صفحات 50-38 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه صنعتی مالک اشتر
چکیده:   (628 مشاهده)
افزایش دقت در محاسبات ضرایب هیدرودینامیکی، تعیین دقیق‌تر پیش‌بینی مانور شناور را نتیجه می‌دهد. روش‌های مختلف تعیین ضرایب هیدرودینامیکی در تعیین دقت ضرایب، بخصوص در شبیه‌سازی عددی موثر خواهد بود. در این مطالعه آزمایشات مکانیزم حرکت صفحه‌ای (پی‌ام‌ام)، تست کشش مورب و تست بازوی چرخان، شبیه‌سازی شده و دقت نتایج آنها با داده‌های آزمایشگاهی سنجیده شده و با هم مقایسه شده‌اند. دقت نتایج شبیه‌سازی مدل آشفتگی جریان کی-إپسیلون ری‌الایزیبل و کا-اومگا اس‌اس‌تی در شبیه‌سازی آزمایش تست بازوی چرخان بررسی شده است. همچنین روشی جهت کاهش ابعاد دامنه و زمان حل در شبیه‌سازی حرکت سواِی و هیو خالص ارائه و مورد بحث و ارزیابی قرار گرفته است. این روش با دقتی برابر روش مرسوم شبیه‌سازی، محاسبه ضرایب هیدرودینامیکی را با کاهش بیش از نصف اندازه شبکه و زمان حل، ممکن می‌سازد. با ترکیب روش‌های فوق محاسبه ضرایب میرایی حرکات هیو و سواِی با خطای زیر 5/8 درصد قابل انجام است. همچنین تعیین ضرایب میرایی حرکات پیچ و یاو با خطای کمتر از 5/9 درصد قابل انجام است. مقادیر جرم افزوده حرکات سواِی و هیو با خطای کمتر از 20 درصد و برای حرکات پیچ و یاو با خطای کمتر از 15 درصد قابل انجام است. 
متن کامل [PDF 1548 kb]   (246 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: طراحي، هیدروديناميك و ساخت زيرسطحي
دریافت: 1401/5/12 | پذیرش: 1401/12/16

فهرست منابع
1. 1- Abkowitz, M. A., (1969), Stability and motion control of ocean vessels, M.I.T. Press, Massachusetts Institute of Technology.
2. Zhang, H., Xu, Y-r. and peng Cai, H. , (2010), Using CFD software to calculate hydrodynamic coefficients, Journal of Marine Science and Application, Vol. 9, No. 2, pp. 149-155. [DOI:10.1007/s11804-010-9009-9]
3. Nazir, Z., min Su, Y. and Z. li Wang, A CFD based investigation of the unsteady hydrodynamic coefficients of 3-D fins in viscous flow, Journal of Marine Science and Application, Vol. 9, No. 3, pp. 250-255, 2010. [DOI:10.1007/s11804-010-1003-8]
4. Pan, Y., Zhang, H. and Q. Zhou, Numerical prediction of submarine hydrodynamic coefficients using CFD simulation, (2012), Journal of Hydrodynamics, Vol. 24, No. 6, pp. 840-847. [DOI:10.1016/S1001-6058(11)60311-9]
5. Xu, F., Zou, Z. J., Yin, J. C. and Cao J., Parametric identification and sensitivity analysis for Autonomous Underwater Vehicles in diving plane, (2012), Journal of Hydrodynamics, Vol. 24, No. 5, pp. 744-751. [DOI:10.1016/S1001-6058(11)60299-0]
6. Mansoorzadeh, S., Pishevar, A. R. and Javanmard, E., (2013), Numerical investigation of dynamic stability of an AUV, Fluid Mechanic and Aerodynamic, Vol. 2, No. 1, pp. 69-81. (in Persian)
7. Pan, Y. C., Zhou, Q. D. and H. X. Zhang, Numerical simulation of rotating arm test for prediction of submarine rotary derivatives, (2015), Journal of Hydrodynamics, Vol. 27, No. 1, pp. 68-75. [DOI:10.1016/S1001-6058(15)60457-7]
8. Javanmard E., Mansoorzadeh, S. Pishevar, A. R. , (2015), Numerical and experimental investigation of effect of control surface angle on an autonomous underwater vehicle drag, Modares Mechanical Engineering, Vol. 14, No. 16, pp. 358-366. (in Persian)
9. Nouri, N. M., Mostafapour, K., Sooha, Y. H. and Hassanpour, S. H. , (2016), Investigation of hydrodynamic derivatives of an auv based on the water tunnel testing maneuvers, Journal of Marine engineering, Vol. 25,No1, pp. 67-75. (in Persian)
10. Hajvand, A., Hasani, M., Babaee, M. and Sadeghian, M. , (2016), Determine of an AUV hydrodynamic coefficient by CFD, darya fonoon, Vol. 3, No. 1, pp. 54-66. (in Persian)
11. Shojaeefard, M. H., Khorampanahi, A., Mirzaei, M., Numerical investigation of oscillation frequency and amplitude effects on the hydrodynamic coefficients of a body with NACA0012 hydrofoil section, (2017), Journal of Mechanical Science and Technology, vol. 31, No. 5, pp. 2251-2260. [DOI:10.1007/s12206-017-0422-8]
12. T. Gao, Y. Wang, Y. Pang, Q. Chen, and Y. Tang, (2018), A time-efficient CFD approach for hydrodynamic coefficient determination and model simplification of submarine, , Ocean Engineering, vol. 154, no. February, pp. 16-26. [DOI:10.1016/j.oceaneng.2018.02.003]
13. Ardeshiri, S., Mousavizadegan, S.H and Kheradmad, S., Effect of Motion Domain and Velocity on Calculation of Underwater Vehicle Coefficients, (2019), Modares Mechanical Engineering.; vol. 20, No. 1, pp.117-128. (in Persian)
14. Ardeshiri, S., Mousavizadegan, S.H and Kheradmad, S., Virtual Simulation of PMM Tests Independent of Test Parameters, (2020), Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike; vol. 71, No. 1, pp. 55-73. [DOI:10.21278/brod71204]
15. Seif, M. S., Hasanvand, A., Investigating the geometry and control surface of AUV robots on hydrodynamics performance, (2021), marine-engineering. Vol. 17,No, 33,pp. 53-64. (in Persian)
16. K. Han et al. (2021), Six-dof cfd simulations of underwater vehicle operating underwater turning maneuvers, Journal of Marine Science and Engineering, vol. 9, no. 12. [DOI:10.3390/jmse9121451]
17. Groves, N. C., Huang, T. T., and M. S. Chang, Geometric Characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF Models (DTRC Model Numbers 5470 and 5471, DTRC/SHD-1298-01), (1989), David Taylor Research Center, Bethesda, Maryland 20084-5000.
18. Roddy, R. F., Investigation of The Stability and Control Characteristics of Several Configurations of the DARPA SUBOFF Model, 1990.
19. Fossen, T. I., Underwater Vehicle Dynamics. Book TSI Press, (1995), Albuquerque, pp.41-108.
20. Fossen, T. I. and Fjellstad, O., Mathematical Modelling of Systems?: Methods , Tools and Applications in Engineering and Related Sciences Nonlinear modelling of marine vehicles in 6 degrees of freedom, International Journal of Mathematical Modeling of Systems, (1995), Vol. 1, No. February 2014, pp. 17-27. [DOI:10.1080/13873959508837004]
21. SNAME, T, (1950). Nomenclature for treating the motion of a submerged body through a fluid. The Society of Naval Architects and Marine Engineers. Technical and Research Bulletin No 1-5.
22. Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J., A new k-epsilon eddy viscosity model for high reynolds number turbulent flows model development and validation, (1994), Computers & Fluids, Vol. 24, No. August, pp. 227-238. [DOI:10.1016/0045-7930(94)00032-T]
23. Launder, B. E. and Spalding, D. B., The numerical computation of turbulent flows, (1974), Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. [DOI:10.1016/0045-7825(74)90029-2]
24. Lloyd, G., Espanoles, A., (2002). Best Practice Guidelines for Marine Applications of Computational Fluid Dynamics. WS Atkins Consultants and Members of the NSC, MARNET-CFD Thernatic Network.
25. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, (2008). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications, Journal of Fluids Engineering, Transactions of the ASME, vol. 130, No. 7, pp. 0780011-0780014. [DOI:10.1115/1.2960953]
26. Dantas, J.L.D., Barros, E.A.d, (2013). Numerical analysis of control surface effects on AUV maneuverability. Applied Ocean Research, Vol.42, No.1, pp. 168-181. [DOI:10.1016/j.apor.2013.06.002]
27. Goodman, A., Experimental techniques and methods of analysis used in submerged body research. The 3rd Symposium on Naval Hydrodynamics, (1960), September, 17-24, Scheveningen. Washington: National Academy Press; 1960. pp. 379-449.
28. Gertler, M., The DTMB planar motion mechanism system (PMM), (1967), Zagreb: Defense Technical Information Center. [DOI:10.21236/AD0659053] []
29. Renilson, M., Submarine Hydrodynamics, 2015. [DOI:10.1007/978-3-319-16184-6]
30. Roache, P. J., a method for uniform reporting of grid refinement studies, (1994), Journal of Fluid Engineering, vol. 116. pp. 405-413. [DOI:10.1115/1.2910291]
31. Roache, P. J., Verification of Codes and Calculations, (1998), AIAA J., vol. 36, no. 5, pp. 696-702. [DOI:10.2514/2.457]
32. Roache, P. J., Quantification of Uncertainty in Computational Fluid Dynamics, (1997), Annu. Rev. Fluid Mech., vol. 29, no. 1, pp. 123-160. [DOI:10.1146/annurev.fluid.29.1.123]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.