Write your message
Volume 17, Issue 34 (12-2021)                   Marine Engineering 2021, 17(34): 73-83 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabet M T, Behroz H, Nourmohammadi H. Designing and manufacturing Bernoulli’s based water speed sensor for applied on Autonomous Underwater Vehicle. Marine Engineering 2021; 17 (34) :73-83
URL: http://marine-eng.ir/article-1-893-en.html
1- Malekashtar University of Technology, Northern Research Center for Science and Technology
Abstract:   (2214 Views)
Speed estimation is one of the important parameters in navigation of an Autonomous Underwater Vehicle (AUV). Varied underwater speed sensors exist that they use of different technologies for measuring of an underwater speed. For example, ultrasonic, electromagnetic, optical and paddlewheel speed sensors and Doppler Velocity Log (DVL) are used for water speed measuring. The purpose of the article is designing and manufacturing of a differential pressure based speed sensor that measures an AUV speed by using of Bernoulli’s low. For analyzing of the proposed sensor, it is tested in the towing tank of the National Iranian Marin Laboratory (NIMALA). For determining of the sensor measurement accuracy, the sensor data is compared with an accurate speedometer that is installed on the towing tank. With analyzing of the results, the sensor accuracy is 0.05 (m/sec) in speed range 0.5-4.5 (m/sec).
Full-Text [PDF 686 kb]   (643 Downloads)    
Type of Study: Research Paper | Subject: Submarine Hydrodynamic & Design
Received: 2021/04/23 | Accepted: 2021/10/21

References
1. Yoerger, D. R., Jakuba, M., Bradley, A. M. and Bingham, B., (2007), Techniques for deep sea near bottom survey using an autonomous underwater vehicle, Int. J. Robot. Res., vol. 26, no. 1, pp. 41-54. [DOI:10.1177/0278364907073773]
2. Khan, R., Taher, T. and Hover, F., (Sep. 2010), Accurate geo-referencing method for AUVs for oceanographic sampling, in Proc. OCEANS Conf., DOI: 10.1109/OCEANS.2010.5664570. [DOI:10.1109/OCEANS.2010.5664570]
3. Kunz, C., Murphy, C., Singh, H., Pontbriand, C., Sohn, R. A., Singh, S., Sato, T., Roman, C., Nakamura, K.-I., Jakuba, M., Eustice, R., Camilli, R. and J. Bailey, (2009), Toward extra planetary under-ice exploration: Robotic steps in the arctic, J. Field Robot., vol. 26, no. 4, pp. 411-429. [DOI:10.1002/rob.20288]
4. Paull, L., Saeedi, S., Seto, M. and Li, H., (2014), AUV navigation and localization: A review, IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131-149. [DOI:10.1109/JOE.2013.2278891]
5. Sabet, M. T., Daniali, H. M., Fathi, A. and Alizadeh, E., (2018), A Low-Cost Dead Reckoning Navigation System for an AUV Using a Robust AHRS: Design and Experimental Analysis", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 43, Issue. 4, pp. 927-939. [DOI:10.1109/JOE.2017.2769838]
6. Alizadeh, E., Nourmohammadi, H., Sabet, M. T., Zarrini Larimi, M., (2017), Design and implementation of AHRS/GPS/DR Navigation algorithm applied to long-range AUVs with high underwater durability, Journal of Marin Engineering, Vol.26, p.47-57. (In Persian)
7. Modarress, D., Svitek, P., Modarress, K. and Wilson D. W., (2007), Micro-Optical Sensors for Underwater Velocity Measurement, IEEE conference, Tokyo, Japan, 17-20. [DOI:10.1109/UT.2007.370801]
8. Costanzi, R., Fanelli, F., Meli, E., Ridolfi, A., Caiti, A. and Allotta, B., (2019), UKF-Based Navigation System for AUVs: Online Experimental Validation, IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 44, Issue. 3, pp. 633-641. [DOI:10.1109/JOE.2018.2843654]
9. Wang, D., Xu, X., Yao, Y., Zhang, T. and Zhu, Y., (2020), A Novel SINS/DVL Tightly Integrated Navigation Method for Complex Environment", IEEE Transactions on Instrumentation and Measurement, vol. 69, Issue. 7, pp. 5183-5196. [DOI:10.1109/TIM.2019.2955187]
10. Dhanak, M. R. and Xiros, N. I., (2016), Springer Handbook of Ocean Engineering, New York, NY, USA, Springer. [DOI:10.1007/978-3-319-16649-0]
11. Teledyne RD Instrument, Inc, (2017), Datasheet Teledyne explorer DVL, Poway, CA, USA, [Online]. Available: http://www.teledynemarine.com/explorer-doppler-vel.
12. Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., and Fanfani, M., (2015), The ARROWS project: Adapting and developing robotics technologies for underwater archaeology, IFAC-PapersOnLine, vol. 48, no. 2, pp. 194-199. [DOI:10.1016/j.ifacol.2015.06.032]
13. Mourikis, A. and Roumeliotis, S., (2006), Performance analysis of multi-robot cooperative localization, IEEE Trans. Robot., vol. 22, no. 4, pp. 666-681. [DOI:10.1109/TRO.2006.878957]
14. Fallon, M. F., Kaess, M., Johannsson, H. and Leonard, J. J., (2011), Efficient AUV navigation fusing acoustic ranging and side-scan sonar, inProc. IEEE Int. Conf. Robot, pp. 2398-2405. [DOI:10.1109/ICRA.2011.5980302]
15. Osterloh, C., Pionteck, T. and Maehle, E., (2012), MONSUN II: A small and inexpensive AUV for underwater swarms, in Proc. 7th German Conf. Robot, pp. 1-6.
16. OpenROV, (2017), "OpenROV/products/trident," OpenROV, Berkeley, CA, USA, [Online]. Available: https://www.openrov.com/products/trident/, Accessed on.
17. Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M. and Perry, M. J., (2004), Underwater gliders for ocean research, Mar. Technol. Soc. J., vol. 38, no. 2, pp. 73-84. [DOI:10.4031/002533204787522703]
18. Liu, P., Wang, B., Deng Z. and Fu, M., (2018), "INS/DVL/PS Tightly Coupled Underwater Navigation Method with Limited DVL Measurements1", IEEE Sensors Journal, vol. 18, Issue. 7, pp. 2994-3002. [DOI:10.1109/JSEN.2018.2800165]
19. Claus, B., Kepper, J. H., Suman, S., Kinsey, J. C., (2017), Closed-loop one-way-travel time navigation using low-grade odometry for autonomous underwater vehicles, Journal of Field Robotics, vol. 35, Issue. 4, pp. 421-434. [DOI:10.1002/rob.21746]
20. AIRMARE Technology Corporation, (2018), "Datasheet UST850 SmartTM Sensor Thru-hull", Milford, Hampshire, USA, [Online]. Available: http://www.airmar.com/uploads/brochures/UST800-850-UDST800-SmartSensors.pdf.
21. Measurement Science Enterprise (MSE), Inc., (2007), Datasheet MicroVTM System, Pasadena, CA, USA, [Online]. Available: http://www.msesensors.com/Papers/mixcroV-description.pdf.
22. Anderson, Jr., J., (1985), Fundamentals of Aerodynamics, 3rd ed. New York, NY, USA: McGraw-Hill.
23. Fuentes-Pérez J. F., A Tuhtan, J., Carbonell-Baeza, R., Musall, M., Toming, G., Muhammad, M., Kruusmaa, M., (2015), Current velocity estimation using a lateral line probe, Ecol. Eng., vol. 85, pp. 296-300. [DOI:10.1016/j.ecoleng.2015.10.008]
24. Ower, E. and Pankhurst, R. C., (2014), The Measurement of Air Flow. Amsterdam, The Netherlands: Elsevier.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.