پیام خود را بنویسید
دوره 16، شماره 32 - ( 9-1399 )                   جلد 16 شماره 32 صفحات 130-119 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samaei S R, Ghodsi Hassanabad M, Asadian Ghahfarrokhi M, Ketabdari M J. Structural health monitoring of offshore structures using a modified modal strain energy method (Case study: four-leg jacket substructure of an offshore wind turbine). Marine Engineering 2020; 16 (32) :119-130
URL: http://marine-eng.ir/article-1-843-fa.html
سمائی سیدرضا، قدسی حسن آباد مجید، اسدیان قهفرخی محمد، کتابداری محمدجواد. پایش سلامت سازه های دریایی به روش انرژی کرنشی مودال اصلاح شده (مطالعه موردی: زیرسازه شابلونی چهار پایه توربین بادی فراساحلی). مهندسی دریا. 1399; 16 (32) :119-130

URL: http://marine-eng.ir/article-1-843-fa.html


1- گروه مهندسی عمران، دانشگاه علوم و تحقیقات، دانشگاه آزاد اسلامی پردیس بین الملل، قشم
2- گروه صنایع دریایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی
3- دانشکده مهندسی دریا، دانشگاه صنعتی امیرکبیر
چکیده:   (3517 مشاهده)
 سکوهای شابلونی چهارپایه از پرکاربردترین سازه‌های فراساحلی هستند که در طول عمر بهره‌برداری درمعرض آسیبهای مختلفی قرار می‌گیرند. برخلاف سازه‌های خشکی، این سازه‌ها دائماً در معرض برخورد امواج، خوردگی و آسیب اعضاء به ویژه در ناحیه پاشش آب هستند. در عمق‌های کم  تا متوسط استفاده از این سازه توربینهای بادی فراساحلی رایج است. با سپری شدن عمر سرویس بسیاری از توربینهای بادی دریایی، پایش سلامت آنها ضرورت یافته است. در این تحقیق از روش انرژی کرنشی مودال اصلاح شده و در نظر گرفتن فرکانس‌های طبیعی برای تشخیص عیوب احتمالی اعضاء واقع در عرشه و ناحیه پاشش آب که بیش از سایر اعضا در معرض بارهای تناوبی امواج و خوردگی بالای آب دریا هستند، استفاده شده است. نتایج نشان می‌دهند، روش اصلاح شده دقت بالاتری در مکان‌یابی آسیب نسبت به روش اولیه (شاخص استابس) دارد. همچنین، آسیبهای تکی و چندگانه، با شدت کم و زیاد، توسط این روش با دقت مناسبی تعیین گردیدند.    
متن کامل [PDF 686 kb]   (2394 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: سازه های فراساحلی
دریافت: 1399/4/9 | پذیرش: 1399/9/17

فهرست منابع
1. [Online]. Available: https://gwec.net/record-6-1-gw-of-new-offshore-wind-capacity-installed-globally-in-2019/.
2. R. Rolfes, S. Zerbst, G. Haake, J. Reetz and J. P. Lynch, "Integral SHM-system for offshore wind turbines using smart wireless sensors," in 6th International Workshop on Structural Health Monitoring, Stanford, CA, 2007.
3. C. P. Fritzen, "Vibration-Based Techniques for SHM," in Structural Health Monitoring, 2006, pp. 45-224. [DOI:10.1002/9780470612071.ch2]
4. C. Bouty, S. Schafhirt, L. Ziegler and M. Muskulus, "Lifetime extension for large offshore wind farms: Is it enough to reassess fatigue for seleceted design positions?," Energy Procedia, vol. 137, pp. 523-530, 2017. [DOI:10.1016/j.egypro.2017.10.381]
5. S. W. Doebling, C. F. Farrar, M. B. Prime and D. W. Shevits, "Damage identification and health monitoring of structural and mechanical systems from chanes in their vibration characteristics: A literature review," Los Alamos National Laboratory, USA, 1996. [DOI:10.2172/249299]
6. D. Balageas, "Introduction to Structural Health Monitoring," in Structural Health Monitoring, Wiley, 2006, pp. 13-43. [DOI:10.1002/9780470612071.ch1]
7. S. W. Doebling, C. R. Farrar, M. B. Prime and D. W. Shevitz, "A summary review of damage identification methods that examine changes in dynamic properties," Journal of Shock Vibration, vol. 30, pp. 91-105, 1995. [DOI:10.1177/058310249803000201]
8. P. Cawley and R. D. Adams, "The location of defects in structures from measurement of natural frequencies," The Journal of Strain Analysis for Engineering Design, vol. 14, pp. 49-57, 1979. [DOI:10.1243/03093247V142049]
9. F. Shahrivar and G. Bouwkamp, "Damage detection in offshore platforms using vibration information," Journal of Energy Resources Technology, vol. 108, pp. 97-106, 1986. [DOI:10.1115/1.3231263]
10. S. R. Hansen and G. N. Vanderplaats, "Approximation method for configuration optimization of trusses," AIAAJ, vol. 28, pp. 161-168, 1990. [DOI:10.2514/3.10367]
11. S. Doebling, F. Hemez, M. Barlow, L. Peterson and C. Farhat, "Selection of experimental modal data sets for damage detection via model update," in 34th Structures, Structural Dynamics and Materials Conference, 1993. [DOI:10.2514/6.1993-1481]
12. J. T. Kim and N. Stubbs, "Damage detection in offshore jacket structures from limited modal information," International Journal of Offshore and Polar Engineering, vol. 5, pp. 58-66, 1995.
13. N. Stubbs, J. T. Kim and C. R. Farrar, "Field verification of a nondestructive damage localization and severity estimation algorithm," in Proceedings-SPIE the international society for optical engineering, 1995.
14. N. Stubbs and J. T. Kim, "Damage localization in structures without baseline modal parameters," AIAA Journal, vol. 34, pp. 1644-1649, 1996. [DOI:10.2514/3.13284]
15. A. Salawu, "Detection of structural damage through changes in frequency: a review," Engineering Structures, vol. 19, pp. 718-723, 1997. [DOI:10.1016/S0141-0296(96)00149-6]
16. C. R. Farrar and D. A. Jauregui, "Comparative study of damage identification algorithms applied to a brdige: II. Numerical study," Smart Materials and Structures, vol. 7, pp. 720-731, 1998. [DOI:10.1088/0964-1726/7/5/014]
17. J. T. Kim and N. Stubbs, "Improved damage identification method based on modal information," Journal of Sound and Vibration, vol. 252, pp. 223-238, 2002. [DOI:10.1006/jsvi.2001.3749]
18. Y. Y. Li, L. Cheng, L. H. Yam and W. O. Wong, "Identification of damage locations for plate-like structures using damage sensitive indices: strain modal approach," Computers & Structures, vol. 80, pp. 1881-1894, 2002. [DOI:10.1016/S0045-7949(02)00209-2]
19. H. Z. Yang, H. J. Li and S. Q. Wang, "Damage localization of offshore platforms under ambient excitation," China Ocean Engineering, vol. 17, pp. 495-504, 2003.
20. M. Ge and E. M. Lui, "Structural damage identification using system dynamic properties," Computers & Structures, vol. 83, pp. 2185-2196, 2005. [DOI:10.1016/j.compstruc.2005.05.002]
21. S. Wang and H. Li, "Modal strain energy for damage detection of offshore jacket structures from partial modal information: Experimental validation," in Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference, San Francisco, California, USA, 2006.
22. H. W. Shih, D. P. Thambiratnam and T. H. Chan, "Vibration based structural damage detection in flexural members using multi-criteria approach," Journal of Sound and Vibration, vol. 323, pp. 645-661, 2009. [DOI:10.1016/j.jsv.2009.01.019]
23. H. Hu and C. Wu, "Development of scanning damage index for the damage detection of plate structures using modal strain energy method," Mechanical Systems and Signal Processing, vol. 23, pp. 274-287, 2009. [DOI:10.1016/j.ymssp.2008.05.001]
24. S. M. Seyedpoor, "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization," International Journal of Non-Linear Mechanics, vol. 47, pp. 1-8, 2012. [DOI:10.1016/j.ijnonlinmec.2011.07.011]
25. F. Liu, H. Li, W. Li and B. Wang, "Experimental study of improved modal strain energy method for damage localisation in jecket-type offshore wind turbines," Renewable Energy, vol. 72, pp. 174-181, 2014. [DOI:10.1016/j.renene.2014.07.007]
26. S. M. Seyedpoor and O. Yazdanpanah, "An efficient indicator for structural damage localization using the change of strain energy based on static noisy data," Applied Mathematical Modeling, vol. 38, pp. 2661-2672, 2014. [DOI:10.1016/j.apm.2013.10.072]
27. S. Wang, F. Liu and M. Zhang, "Modal strain energy based structural damage localization for offshore platform using simulated and measured data," Journal of Ocean University of China, vol. 13, pp. 397-406, 2014. [DOI:10.1007/s11802-014-2028-4]
28. Y. Li, S. Wang, M. Zhang and C. Zheng, "An improved modal strain energy method for damage detection in offshore platform structures," Journal of Marine Science and Application, vol. 15, pp. 182-192, 2016. [DOI:10.1007/s11804-016-1350-1]
29. M. Martinez-Luengo, A. Kolios and L. Wang, "Structural health monitoring of offshore wind turbines: A review through the statistical pattern recognition paradigm," Renewable and Sustainable Energy Reviews, vol. 64, pp. 91-105, 2016. [DOI:10.1016/j.rser.2016.05.085]
30. C. U. Nguyen, T. C. Huynh and J. T. Kim, "Vibration-based damage detection in wind turbine towers using artificial neural networks," Structural Monitoring and Maintenance, vol. 5, pp. 507-519, 2018.
31. W. Weijtjens, T. Verbelen, E. Capello and C. Devriendt, "Vibration based structural health monitoring of the substructures of five offshore wind turbines," Procedia Engineering, vol. 199, pp. 2294-2299, 2017. [DOI:10.1016/j.proeng.2017.09.187]
32. E. Lozano-Minguez, A. J. Kolios and F. P. Brennan, "Multi-criteria assessment of offshore wind turbine support structures," Renewable Energy, vol. 36, pp. 2831-2837, 2011. [DOI:10.1016/j.renene.2011.04.020]
33. H. Bailey, K. L. Brookes and P. M. Thompson, "Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future," Aquatic Biosystems, vol. 10, pp. 1-13, 2014. [DOI:10.1186/2046-9063-10-8]
34. HSE, Offshore hydrocarbon release statistics and analysis 1992-2015, Bootle, UK: Health and Safety Executive, 2016.
35. R. E. Melchers, "Probabilistic model for marine corrosion of steel for structural reliability assessment," Journal of Structural Engineering, vol. 129, pp. 1484-1493, 2003. [DOI:10.1061/(ASCE)0733-9445(2003)129:11(1484)]
36. J. C. Velaquez, J. M. Van Der Weide, E. Hernandez and H. H. Hernandez, "Statistical Modeling of Pitting Corrosion: Extrapolation of the maximum pit depth-growth," International Journal of Electrochemical Science, vol. 9, pp. 4129-4143, 2014.
37. J. K. Paik and R. E. Melchers, Corrosion wastage in aged structures, 1st ed., Cambridge, UK: Woodhead Publishing, 2008.
38. I. W. Chen, B. L. Wong, Y. H. Lin, S. W. Chau and H. H. Huang, "Design and analysis of jacket substractures for offshore wind turbines," Energies, vol. 9, pp. 1-24, 2016. [DOI:10.3390/en9040264]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.