Volume 16, Issue 32 (11-2020)                   Marine Engineering 2020, 16(32): 47-58 | Back to browse issues page


XML Persian Abstract Print


1- Department of mechanical engineering, Imam Ali University
2- Department of mechanical engineering, Imam Khomeini International University
Abstract:   (3151 Views)
In this study, spray behavior of the cavitation flow and the diesel fuel in a fixed volume combustion chamber for different nozzle hole geometries and needle lift profiles has been investigated using Fire software in order to improve the fuel spray characteristics and marine diesel engine performance. Thus, Firstly fuel flow inside the injector with cylindrical, convergent and divergent conical nozzle holes have been simulated with the base needle lift and then in the following, different needle lift profiles have been used in converged and diverged conical nozzles. Numerical results show that increasing the nozzle hole diameter and rounding edge and duration of needle opening lead to increase the injected and evaporated fuel mass and spray penetration length. With the increase in the amount of evaporated mass,SMD is decreasing. Thus spray characteristics can be controlled by varying the nozzle geometry and needle lift profile. Numerical results and experimental data was validated from previous researches.
Full-Text [PDF 1322 kb]   (1504 Downloads)    
Type of Study: Research Paper | Subject: CFD
Received: 2020/04/18 | Accepted: 2020/08/20

References
1. Heywood, J. B.,(1998),Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., New York.
2. Som, S., Aggarwal, S.K., El-Hannouny, E.M., Longman, D.E.,(2010),Investigation of nozzle flow and cavitation characteristics in a diesel injector, Journal of Engineering for Gas Turbine and Power, Vol. 132, p. 1-12. [DOI:10.1115/1.3203146]
3. Som, S., Longman,D.E., Ramirez, A. I., Aggarwal, S.,(2012), Influence of nozzle orifice geometry and fuel properties on flow and cavitation characteristics of a diesel injector, In: Lejda Kazimierz, editor, Fuel injection in automotive engineering, InTech, ISBN: 978-953-51-0528-2. [DOI:10.5772/38900]
4. Salvador, F.J., Martinez-Lopez, J., Caballer, M., et al, (2013), Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods, Energy Conversion and Management, Vol. 66, No. 2, p. 246-256. [DOI:10.1016/j.enconman.2012.10.011]
5. Soteriou, C., Andrews, R., Smith,M.,(1995), Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization, SAE Technical Paper 950080. [DOI:10.4271/950080]
6. Suh, H.K., and Lee, C.S.,(2008),Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics, Internal Journal of Heat and Fluid Flow, Vol. 29, p.1001-1009. [DOI:10.1016/j.ijheatfluidflow.2008.03.014]
7. Payri, F., Bermúdez, V., Payri, R., Salvador, F.J.,(2004),The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles, Fuel, Vol. 83, p. 419-431. [DOI:10.1016/j.fuel.2003.09.010]
8. Payri, R., Salvador, F.J., Gimeno, J., de la Morena, J.,(2009),Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber, Internal Journal of Heat and Fluid Flow, Vol. 30, p. 768-777. [DOI:10.1016/j.ijheatfluidflow.2009.03.011]
9. Sohrabi, S., Zandi, A., Shams, M.,(2013),Numerical investigation of the effect of the number of injector holes on the flow inside the nozzle, 8th International Conference on Internal Combustion Engines & Oil, Tehran, Iran (In Persian).
10. Akbari, N., Azizi Hasanakloo, S.,(2018),Numerical investigation of the cavitation phenomenon on spray behavior of diesel fuel in injector, Modares Mechanical Engineering, Vol. 18, No. 03, p. 189-196 (In Persian).
11. Bergstrand, P.,(2004),The effects of orifice shape on diesel combustion, SAE Technical Paper, Vol. 13, No. 3, p. 106-116. [DOI:10.4271/2004-01-2920]
12. Desantes, J.M. , Payri, R., Salvador, F.J. , De la Morena, J.,(2010), Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions, Fuel, Vol. 89, p. 3033-3041. [DOI:10.1016/j.fuel.2010.06.004]
13. Shervani-Tabar, M.T., Parsa, S., Ghorbani, M.,(2012), Numerical study on the effect of the cavitation phenomenon on the characteristics of fuel spray, Mathematical and Computer Modelling, Vol. 56, No. 5, p. 105-117. [DOI:10.1016/j.mcm.2011.12.012]
14. Payri, R., Gimeno, J., Viera, J.P., Alejandro, H. P., (2013), Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector, Fuel, Vol. 113, p. 257-265. [DOI:10.1016/j.fuel.2013.05.057]
15. Schugger, C., Renz, U.,(2003),Experimental investigations on the primary breakup zone of high pressure diesel spray from multiorifice nozzles, in: ICLASS Europe 03.
16. Payri, F., Bermudez, V., Payri, R., Salvador, F.J., (2004), Theinfluence of cavitation on the internal flow and spray characteristics in diesel injection nozzles, Fuel, Vol.83, p. 419-431. [DOI:10.1016/j.fuel.2003.09.010]
17. KyuSuh, H.,Lee, C.S.,(2008),Effects of cavitation in nozzle orifice on the diesel fuel atomization characteristics, International Journal of Heat and Fluid Flow, Vol. 29, p. 1001-1009. [DOI:10.1016/j.ijheatfluidflow.2008.03.014]
18. Fujimoto, H., Mishikori, T., Tsumakoto, T., Senda, J., (1994), Modeling of atomization and vaporization process in flash boiling spray, ICLASS-94 Conference, France.
19. Avl List GmbH. AVL Fire v. 2013, CFD solver, Eulerian multiphase.
20. Edelbauer, W., (2014), Coupling of 3D Eulerian and Lagrangian Spray Approaches in Industrial Combustion Engine Simulations, Journal of Energy and Power Engineering, Vol. 8, No. 1, p. 190-200. [DOI:10.17265/1934-8975/2014.01.022]
21. Avl List GmbH. AVL Fire v. 2013, CFD solver, Spray.
22. Mohammadi, H., Jabbarzadeh, P., Jabbarzadeh, M., Shrevani-Tabar, M.T., (2017), Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling likeguides, Fuel, Vol. 196, No. 5, p. 419-430. [DOI:10.1016/j.fuel.2017.01.094]
23. Brusiani, F., Falfari, S., Pelloni, P., (2014), Influence of the Diesel injector hole geometry on theflow conditions emerging from the nozzle, 68th Conference of the Italian Thermal Machines Engineering Association, ATI2013, Energy Procedia, Vol. 45, p. 749 - 758. [DOI:10.1016/j.egypro.2014.01.080]
24. Battistoni, M., Grimaldi, C.N., (2012), Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels, Applied Energy, Vol. 97, No. 1,p. 656-666. [DOI:10.1016/j.apenergy.2011.11.080]
25. Perry, R.H., Green, D.W., (1997), Perry's chemical engineer's handbook, McGraw-Hill.
26. Postrioti, L., Grimaldi, C.N., Ceccobello, M., Di Gioia, R., (2004), Diesel common rail injection system behavior with different fuels, SAE Technical paper 2004-01-0029. [DOI:10.4271/2004-01-0029]
27. Farajollahi, A.H., Firuzi, M., Pourseifi, M., Mardani, A., and Rostami, M., Numerical investigation of the effect of swirl and needle lift profile change on the diesel fuel spray behavior. JER. 2019; 54 (54):25-38, URL:http://engineresearch.ir/article-1-692-a.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.