Write your message
Volume 17, Issue 33 (5-2021)                   marine-engineering 2021, 17(33): 23-36 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarmeili M, Rabiee A H, Rezaei Ashtiani H R. Application of active nonlinear energy sink to reduce the oscillations of flow exposed circular cylinder. marine-engineering. 2021; 17 (33) :23-36
URL: http://marine-eng.ir/article-1-789-en.html
1- Arak University of Technology
Abstract:   (1185 Views)
In this paper, passive and active vortex-induced vibration control of a circular cylinder that oscillates freely in longitudinal and transverse directions is investigated by utilization of nonlinear energy sink. The nonlinear energy sink is composed of a mass, a damping and a nonlinear spring that attaches inside of vibrating cylinder. The vibrational energy of the main cylinder is transferred to the adsorbent mass, thereby reducing the cylinder oscillations. The effectiveness of the proposed control method, numerical results are presented for four Reynolds numbers located in the lock-in region, Re = 85, 90, 95, 100. According to the numerical simulations, the optimized parameters for the passive nonlinear energy sink are considered equal to ... . It can be seen that at all Reynolds numbers, active nonlinear energy sink perform better than passive energy absorbers in reducing vortex-induced vibrations.
Full-Text [PDF 1506 kb]   (522 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2020/06/30 | Accepted: 2021/01/13

1. Fernandez-Escudero, C., Gagnon M., Laurendeau E., Prothin S., Ross A. and Michon G. (2020). Experimental and Numerical Aeroelastic Analysis of Airfoil-Aileron System with Nonlinear Energy Sink. Nonlinear Structures and Systems, Volume 1, Springer: 133-135. [DOI:10.1007/978-3-030-12391-8_17]
2. Hokmabady, H., Mojtahedi A. and Lotfollahi Yaghin M.A., (2016), Structural Control and Fatigue Analysis of Offshore TLP Wind Turbine Using TMD, Journal Of Marine Engineering, Vol.11(22), p.39-50.
3. Lund, A., Dyke S.J., Song W. and Bilionis I., (2020), Identification of an experimental nonlinear energy sink device using the unscented Kalman filter, Mechanical Systems and Signal Processing, Vol.136, p.106512. [DOI:10.1016/j.ymssp.2019.106512]
4. Bakhtiari nejed, F. and Jabarzadeh M., (2007), **Investigations of harmful Vibration on Critically Sick Person During Sea Transportation, Journal Of Marine Engineering, Vol.4(6), p.25-37.
5. Rabiee, A.H. and Esmaeili M., (2019), Simultaneous vortex-and wake-induced vibration suppression of tandem-arranged circular cylinders using active feedback control system, Journal of Sound and Vibration, p.115131. [DOI:10.1016/j.jsv.2019.115131]
6. Hasheminejad, S.M., Rabiee A.H. and Bahrami H., (2018), Active closed-loop vortex-induced vibration control of an elastically mounted circular cylinder at low Reynolds number using feedback rotary oscillations, Acta Mechanica, Vol.229(1), p.231-250. [DOI:10.1007/s00707-017-1960-y]
7. Hasheminejad, S.M., Rabiee A.H. and Markazi A., (2017), Dual-Functional Electromagnetic Energy Harvesting and Vortex-Induced Vibration Control of an Elastically Mounted Circular Cylinder, Journal of Engineering Mechanics, Vol.144(3), p.04017184. [DOI:10.1061/(ASCE)EM.1943-7889.0001411]
8. Kumar, R.A., Sohn C.-H. and Gowda B.H., (2008), Passive control of vortex-induced vibrations: an overview, Recent Patents on Mechanical Engineering, Vol.1(1), p.1-11. [DOI:10.2174/2212797610801010001]
9. Lee, Y., Vakakis A., Bergman L., McFarland D.M. and Kerschen G., (2007), Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory, AIAA journal, Vol.45(3), p.693-711. [DOI:10.2514/1.24062]
10. Tumkur, R.K.R., Calderer R., Masud A., Pearlstein A.J., Bergman L.A. and Vakakis A.F., (2013), Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment, Journal of Fluids and Structures, Vol.40, p.214-232. [DOI:10.1016/j.jfluidstructs.2013.03.008]
11. Mehmood, A., Abdelkefi A., Akhtar I., Nayfeh A., Nuhait A. and Hajj M., (2014), Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders, Journal of Vibration and Control, Vol.20(8), p.1137-1147. [DOI:10.1177/1077546312469425]
12. Goyder, H., (2002), Flow-induced vibration in heat exchangers, Chemical Engineering Research and Design, Vol.80(3), p.226-232. [DOI:10.1205/026387602753581971]
13. De Santis, D. and Shams A., (2017), Numerical modeling of flow induced vibration of nuclear fuel rods, Nuclear Engineering and Design, Vol.320, p.44-56. [DOI:10.1016/j.nucengdes.2017.05.013]
14. Paı, M., (2006), Real-life experiences with flow-induced vibration, Journal of fluids and structures, Vol.22(6-7), p.741-755. [DOI:10.1016/j.jfluidstructs.2006.04.002]
15. Nikoo, H.M., Bi K. and Hao H., (2020), Textured pipe-in-pipe system: A compound passive technique for vortex-induced vibration control, Applied Ocean Research, Vol.95, p.102044. [DOI:10.1016/j.apor.2019.102044]
16. Tian, W., Li Y., Li P., Yang Z. and Zhao T., (2019), Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink, Journal of Sound and Vibration, Vol.462, p.114942. [DOI:10.1016/j.jsv.2019.114942]
17. Saeed, A.S., AL-Shudeifat M.A. and Vakakis A.F., (2019), Rotary-oscillatory nonlinear energy sink of robust performance, International Journal of Non-Linear Mechanics, Vol.117, p.103249. [DOI:10.1016/j.ijnonlinmec.2019.103249]
18. Zhao, X.-Y., Zhang Y.-W., Ding H. and Chen L.-Q., (2018), Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink, International Journal of Applied Mechanics, Vol.10(09), p.1850096. [DOI:10.1142/S1758825118500965]
19. Zhou, K., Xiong F., Jiang N., Dai H., Yan H., Wang L. and Ni Q., (2019), Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink, Nonlinear Dynamics, Vol.95(2), p.1435-1456. [DOI:10.1007/s11071-018-4637-8]
20. Prasanth, T. and Mittal S., (2008), Vortex-induced vibrations of a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics, Vol.594, p.463-491. [DOI:10.1017/S0022112007009202]
21. Hasheminejad, S.M., Rabiee A.H. and Jarrahi M., (2017), Semi-active vortex induced vibration control of an elastic elliptical cylinder with energy regeneration capability, International Journal of Structural Stability and Dynamics, p.1750107. [DOI:10.1142/S0219455417501073]
22. Hasheminejad, S.M., Rabiee A.H., Jarrahi M. and Markazi A., (2014), Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller, Journal of fluids and structures, Vol.50, p.49-65. [DOI:10.1016/j.jfluidstructs.2014.06.011]
23. Rabiee, A.H., (2019), Galloping and VIV control of square-section cylinder utilizing direct opposing smart control force, Journal of Theoretical and Applied Vibration and Acoustics, Vol.5(1), p.69-84.
24. Rabiee, A.h., Jarrahi M. and Hasheminejad S.M., (2015), A collaborative simulation for active flow-induced vibration control of a circular cylinder, Journal of Solid and Fluid Mechanics, Vol.5(3), p.113-124.
25. Fallah, K., Fardad A., Fattahi E., Sedaghati zadeh N. and Ghaderi A., (2012), Numerical simulation of planar shear flow passing a rotating cylinder at low Reynolds numbers, Acta Mechanica, Vol.223(2), p.221-236. [DOI:10.1007/s00707-011-0561-4]
26. Étienne, S. and Pelletier D., (2012), The low Reynolds number limit of vortex-induced vibrations, Journal of fluids and structures, Vol.31, p.18-29. [DOI:10.1016/j.jfluidstructs.2012.02.006]
27. Chung, M.-H., (2017), On characteristics of two-degree-of-freedom vortex induced vibration of two low-mass circular cylinders in proximity at low Reynolds number, International Journal of Heat and Fluid Flow, Vol.65, p.220-245. [DOI:10.1016/j.ijheatfluidflow.2017.01.006]
28. Chung, M.-H., (2016), Two-degree-of-freedom vortex induced vibration of low-mass horizontal circular cylinder near a free surface at low Reynolds number, International Journal of Heat and Fluid Flow, Vol.57, p.58-78. [DOI:10.1016/j.ijheatfluidflow.2015.10.004]
29. Choi, S., Choi H. and Kang S., (2002), Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number, Physics of Fluids, Vol.14(8), p.2767-2777. [DOI:10.1063/1.1491251]
30. Singh, S. and Mittal S., (2005), Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes, Journal of fluids and structures, Vol.20(8), p.1085-1104. [DOI:10.1016/j.jfluidstructs.2005.05.011]
31. Zhao, M., Cheng L. and Zhou T., (2013), Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number, Physics of Fluids, Vol.25(2), p.023603. [DOI:10.1063/1.4792351]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.