Write your message
Volume 15, Issue 29 (4-2019)                   Marine Engineering 2019, 15(29): 91-100 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholipour S, Makarchian M. Experimental and Numerical Study of Tension Bearing Capacity of Circular Skirted Foundations Resting on Sand Bed. Marine Engineering 2019; 15 (29) :91-100
URL: http://marine-eng.ir/article-1-698-en.html
1- Bu-Ali Sina University, Hamedan;
Abstract:   (3720 Views)
Skirted foundations are an appropriate alternative to deep foundations in onshore and offshore structures, which have the ability to withstand uplift loads, are also easy to be installed. The tensile performance of skirted foundations on sand was studied by physical and numerical modeling. Laboratory tests were carried out on small-scale foundation models with peripheral skirts. Numerical modeling was performed by 3D finite element analysis for verifying the results of physical tests, as well as generalizing the results to the large-scale models. The effects of geometry and soil properties parameters including foundation diameter, sand shear strength, skirt depth, surface roughness, and load inclination angle were investigated. The results showed that the presence of peripheral skirt improves the behavior of tension bearing capacity of foundations on sand; Improvement values increase with increasing skirt depth, sand shear strength, roughness of foundation surfaces, and also, with decreasing the load inclination angle relative to vertical direction.
Full-Text [PDF 1350 kb]   (1185 Downloads)    
Type of Study: Research Paper | Subject: Marine Structures and near shore
Received: 2018/11/5 | Accepted: 2019/07/7

References
1. Liu, M., Yang, M. and Wang, H., (2014), Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand, Ocean Engineering, Vol. 82, pp. 169-179. [DOI:10.1016/j.oceaneng.2014.02.034]
2. Al-Aghbari, M.Y. and Dutta, R.K., (2008), Performance of square footing with structural skirt resting on sand, Geomechanic and Geoengineering Journal, Vol. 3, No. 4, pp. 271-277. [DOI:10.1080/17486020802509393]
3. Eid, H., (2013), Bearing capacity and settlement of skirted shallow foundations on sand, International Journal of Geomechanics, Vol. 13, No. 5, pp. 645-652. [DOI:10.1061/(ASCE)GM.1943-5622.0000237]
4. El-Saied, A.E., Saleh, N.M. and Elmashad, M.E., (2015), Behavior of circular footing resting on laterally confined granular reinforced soil, Housing and Building National Research Center Journal, HBRC, Vol. 11, pp. 240-245. [DOI:10.1016/j.hbrcj.2014.03.011]
5. Gholipour, S. Makarchian, M., (2018), Study of the behaviour of skirted shallow foundations resting on sand, International Journal of Physical Modelling in Geotechnics, Vol. 18, No. 3, pp. 117-130. [DOI:10.1680/jphmg.16.00079]
6. Rezazadeh, S. and Eslami, A., (2018), Bearing capacity of semi-deep skirted foundations on clay using stress characteristics and finite element analyses, Marine Georesources and Geotechnology, Vol. 36, No. 6, pp. 625-639. [DOI:10.1080/1064119X.2017.1361488]
7. Acosta-Martinez, H.E., Gourvenec, S.M. and Randolph, M.F., (2008), An experimental investigation of a shallow skirted foundation under compression and tension, Soils and Foundations, Vol. 48, No. 2, pp. 247-254. [DOI:10.3208/sandf.48.247]
8. Acosta-Martinez, H.E., Gourvenec, S.M. and Randolph, M.F., (2012), Centrifuge study of capacity of a skirted foundation under eccentric transient and sustained uplift, Geotechnique, Vol. 62, No. 4, pp. 317-328. [DOI:10.1680/geot.9.P.027]
9. Zdravkovic, L., Potts, D.M. and Jardine, R.J., (2001), A parametric study of the pull-out capacity of bucket foundations in soft clay, Geotechnique, Vol. 51, No. 1, pp. 55-67. [DOI:10.1680/geot.2001.51.1.55]
10. Gao, Y., Qiu, Y., Li, B., Li, D., Sha, C.h. and Zheng, X., (2013), Experimental studies on the anti-uplift behavior of the suction caissons in sand, Applied Ocean Research, Vol. 43, pp. 37-45. [DOI:10.1016/j.apor.2013.08.001]
11. Mana, D.S.K., Gourvenec, S.M., Randolph, M.F. and Hossain, M.S., (2012), Failure mechanisms of skirted foundations in uplift and compression, International Journal of Physical Modelling in Geotechnics, Vol. 12 (2), pp. 47-62. [DOI:10.1680/ijpmg.11.00007]
12. Yun, G.J. and Bransby, M.F., (2003), Centrifuge modeling of the horizontal capacity of skirted foundations on drained loose sand, BGA International Conference on Foundations: Innovations, Observations, Design and Practice, Thomas Telford, London, pp. 975-984.
13. Cerato, A.B. and Lutenegger, A.J., (2006), Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132 (11), pp. 1496-1501. [DOI:10.1061/(ASCE)1090-0241(2006)132:11(1496)]
14. Pfeifle, T.W. and Das, B.M., (1979), Model tests for bearing capacity in sand, Journal of Geotechnical Engineering, Vol. 105, pp. 1112-1116.
15. ASTM D2487, (2006), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), American Society for Testing and Materials, West Conshohocken, PA.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.