Write your message
Volume 15, Issue 30 (1-2020)                   Marine Engineering 2020, 15(30): 41-51 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamal-Omidi M, Nabavi S M, Parsania A H P. The Repair of Circumferential Through-Wall Cracked Pipe by Using Local Composite Patch. Marine Engineering 2020; 15 (30) :41-51
URL: http://marine-eng.ir/article-1-687-en.html
1- Malek-Ashtar University of Technology
Abstract:   (3941 Views)
In this paper, the effect of composite patch on cylindrical pipe with circumferential through-wall crack has been investigated under internal pressure. For this purpose, using three-dimensional finite element and J-integral, stress intensity factors is determined before and after the repair. In order to ensure the accuracy of modeling, a pipe with circumferential through-wall crack under uniform tension load is simulated and the results are compared with theoretical data. Then, the cracking cylinder is repaired using four composite patches of Boron/Epoxy, Carbon/Epoxy, Kevlar/Epoxy and Glass/Epoxy in a local manner. The results of study are shown the significant effect of composite patches on reducing the stress intensity factor of cracked cylinder. It is observed that the use of composite patches with higher stiffness has a more decreasing effect on stress intensity factor. Also, the effect of composite patch, properties and thickness of adhesive on stress intensity factors along crack front is evaluated.
Full-Text [PDF 944 kb]   (1610 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2018/09/21 | Accepted: 2019/11/2

References
1. Lam, C.C., Cheng, J.J. and Yam, C.H., (2011), Finite element study of cracked steel circular tube repaired by FRP patching, Procedia Engineering, Vol. 14, p. 1106-1113. [DOI:10.1016/j.proeng.2011.07.139]
2. Meriem-Benziane, M., Abdul-Wahab, S.A., Merah, N. and Babaziane, B., (2014), Numerical analysis of the performances of bonded composite repair with adhesive band in pipeline API X65, Advanced Materials Research, Vols. 875-877, p. 1101-1105. [DOI:10.4028/www.scientific.net/AMR.875-877.1101]
3. Woo, K.S., Ahn, J.S. and Yang, S.H., (2016), Cylindrical discrete-layer model for analysis of circumferential cracked pipes with externally bonded composite materials, Composite Structures, Vol. 143, p. 317-323. [DOI:10.1016/j.compstruct.2016.02.044]
4. Zarrinzadeh, H., Kabir, M.Z. and Deylami, A., (2017), Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading, Thin-Walled Structures, Vol. 112, p. 140-148. [DOI:10.1016/j.tws.2016.12.023]
5. Zarrinzadeh, H., Kabir, M.Z. and Deylami, A., (2017), Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch, Engineering Structures, Vol. 133, p. 24-32. [DOI:10.1016/j.engstruct.2016.12.011]
6. Benyahia, F., Albedah, A. and Bachir Bouiadjr, B., (2014), Stress intensity factor for repaired circumferential cracks in pipe with Bonded composite wrap, Journal of Pressure Vessel Technology, Vol. 136, p. 041201-1-5. [DOI:10.1115/1.4026022]
7. Ayatollahi, M.R., Azad, H. and Hashemi, R., (2007), Investigation of the behavior of cracked tubes reinforced with composite patch, 1st Iranian Pipe and Pipeline Conference, Tehran. (In Persian)
8. Belhadri, D.E., Belhamiani, M., Bouzitouna, W.N. and Oudad W., (2019), Stress intensity factors analyses for external semi-elliptical crack for repaired gas-pipeline by composite overwrap under pressure, Frattura ed Integrità Strutturale, Vol. 49, p. 599-613. [DOI:10.3221/IGF-ESIS.49.55]
9. Medjdoub, S.M., Bouadjra, B.B. and Abdelkader M. (2018), Optimization of the geometrical parameters of bonded composite wrap for repairing cracked pipelines, Frattura ed Integrità Strutturale, Vol. 46, p. 102-112 [DOI:10.3221/IGF-ESIS.46.11]
10. Valadi, Z., Bayesteh, H. and Mohammadi, S., (2018), XFEM fracture analysis of cracked pipeline with and without FRP composite repairs, Mechanics of Advanced Materials and Structures, In press. [DOI:10.1080/15376494.2018.1529844]
11. Nabavi, S.M., Jamal-Omidi, M. and Sharifi H., (2018), Numerical Study of Effective Factors Caused by Composite Patch on Increasing the Performance of Semi-Elliptical Cracked Cylinder, Journal of Mechanical Engineering Tabriz University, Accepted paper. (In Persian)
12. Wang, L., Song, S., Deng, H. and Zhong, K. (2018), Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines, Applied Composite Materials, Vol. 25, p. 321-334. [DOI:10.1007/s10443-017-9621-9]
13. Esmaeel, R.A., Khan, M.A. and Taheri, F., (2012), Assessment of the environmental effects on the performance of FRP repaired steel pipes subjected to internal pressure, Journal of Pressure Vessel Technology, Vol. 134, p. 041702-1-7. [DOI:10.1115/1.4005944]
14. Shouman, A. and Taheri, F., (2011), Compressive strain limits of composite repaired pipelines under combined loading states, Composite Structures, Vol. 93, p. 1538-1548. [DOI:10.1016/j.compstruct.2010.12.001]
15. Ghaffari, M.A. and Hosseini-Toudeshky, H., (2013), Fatigue crack propagation analysis of repaired pipes with composite patch under cyclic pressure, Journal of Pressure Vessel Technology, Vol. 135, p. 031402-1-9. [DOI:10.1115/1.4023568]
16. Lyapin, A.A., Chebakov, M.I., Dumitrescu, A. and Zecheru, G., (2015), Finite-element modeling of a damaged pipeline repaired using the wrapped of a composite material, Mechanics of Composite Materials, Vol. 51, p. 333-340. [DOI:10.1007/s11029-015-9504-9]
17. Lukács, J., Nagy, G., Török, I., Égert, J. and Pere, B., (2010), Experimental and numerical investigations of external reinforced damaged pipelines, Procedia Engineering, Vol. 2, pp. 1191-1200. [DOI:10.1016/j.proeng.2010.03.129]
18. Malekan, M. and Cimini Jr, C.A., (2018), Finite element analysis of a repaired thin-walled aluminum tube containing a longitudinal crack with composite patches under internal dynamic loading, Composite Structures, Vol. 184, p. 980-1004. [DOI:10.1016/j.compstruct.2017.10.079]
19. Meriem-Benziane, M., Abdul-Wahab, S.A., Zahloul, H., Babaziane, B., Hadj-Meliani, M. and Pluvinage, G., (2015), Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single- and double-bonded composites, Composites Part B, Vol. 77, p. 431-439. [DOI:10.1016/j.compositesb.2015.03.008]
20. Doostvandi, B. and Zeinedini, A., (2019), Repair of inclined notches in the pressurized steel pipes using laminated composites, Material Design & Processing Communications, In press. [DOI:10.1002/mdp2.49]
21. Nabavi, S.M., Pourabdol, A. and Jamal-Omidi, M., (2018), Numerical study of the effect of the composite patches on the stress intensity factors for a circumferential fully crack in pipes, Journal of Structural and Construction Engineering (JSCE), Accepted paper. (In Persian)
22. Jamal-Omidi, M., Falah, M. and Taherifar, D., (2014), 3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM, Vol. 50, p.525-539. [DOI:10.12989/sem.2014.50.4.525]
23. Takahashi, Y., (2002), Evaluation of leak-before-break assessment methodology for pipes with a circumferential through-wall crack. Part I: stress intensity factor and limit load solutions, International Journal of Pressure Vessels and Piping, Vol. 79, p. 385-392. [DOI:10.1016/S0308-0161(02)00036-4]
24. Okafor A.C., Singh N., Enemuoh U.E. and Rao, S.V., (2005), Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels, Composite Structures, Vol. 71, p. 258-270. [DOI:10.1016/j.compstruct.2005.02.023]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.