دوره 14، شماره 27 - ( 4-1397 )                   جلد 14 شماره 27 صفحات 59-68 | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه تربیت دبیر شهید رجایی-دانشکده مهندسی عمران
چکیده:   (211 مشاهده)
شالوده عمیق یا شمع، المان‌های سازه‌ای هستند که به منظور انتقال بار سازۀ فوقانی به اعماق زمین و لایه های سخت از آنها استفاده می‌گردد. به دلیل بالا بودن هزینه اجرای شالوده‌های عمیق، طراحی بهینه شمع‌ و تخمین ظرفیت باربری آنها بسیار اهمیت دارد که استفاده از روش هوش مصنوعی و الگوریتم ژنتیک می‌تواند در این راستا راهگشا باشد. در این پژوهش با انتخاب دو نوع شمع پُرکاربرد شامل شمع فلزی لوله‌ای و شمع بتنی پیش‌ساخته، ظرفیت باربری محوری شمع با مدلسازی در نرم‌افزار المان محدود Plaxis 2D و تحت بار هارمونیک در یک خاک لایه‌ای مورد ارزیابی قرار گرفت و نتایج با داده‌های آزمایش دینامیکی شمع (PDA1) در یک مطالعه موردی مقایسه گردید. در این پژوهش نتایج حاصل از 100 تحلیل عددی با استفاده از الگوریتم ژنتیک بهینه‌سازی شده است که منجر به معرفی یک رابطه تخمینی با دقت مناسب در ظرفیت باربری محوری شمع به تفکیک برای شمع‌ بتنی و فلزی گردید. همچنین در این پژوهش مقایسه روش‌های مختلف ارزیابی ظرفیت باربری شمع نشان دهنده این واقعیت است که اغلب روش‌های تجربی ظرفیت باربری بسیار بزرگتری را در مقایسه مقادیر واقعی ارائه می‌دهند
متن کامل [PDF 1098 kb]   (95 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: Offshore Structure
دریافت: ۱۳۹۶/۱۱/۶ | پذیرش: ۱۳۹۷/۵/۱۴

فهرست منابع
1. Mandolini A., Laora A. and Mascarucc Y. (2013), Rational Design of Piled Raft, 11th International Conference on Modern Building Materials, Structures and Techniques, Vilnius Gediminas Technical University, Procedia Engineering, Vol. 57, p. 45–52. [DOI:10.1016/j.proeng.2013.04.008]
2. Alnuaim, A., Naggar, H., Naggar, M. (2014), Performance of Micropiled Raft in Sand Subjected to Vertical Concentrated Load: Centrifuge Modeling, Canadian Geotechnical Journal, Vol. 52, No. 1, p. 33-45. [DOI:10.1139/cgj-2014-0001]
3. Mohamed A. Shahin, (2014), Load–settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks, Soils and Foundations, Vol. 54, No. 3, p. 515-522. [DOI:10.1016/j.sandf.2014.04.015]
4. Lee, K. M. and Xiao, Z. R. (2013), A Simplified Nonlinear Approach for Pile Group Settlement Analysis in Multilayered Soils, Canadian Geotechnical Journal, Vol. 38, No. 5, p. 1063-1080. [DOI:10.1139/t01-034]
5. Kim, H. T., Yoo, H. K., and Kang, I. K. (2001), Genetic Algorithm-Based Optimum Design of Piled Raft Foundations with Model Tests, Geotechnical Engineering, Vol. 33, p. 1-11.
6. Belevičius, B., Ivanikovas, S., Šešok, D., Valentinavičius, S., Žilinskas, J. (2011), Optimal Placement of Piles in Real Grillages Experimental Comparison of Optimization Algorithms, 124X Information Technology and Control, Vol. 40, No. 2, p. 22-36.
7. Momeni, E., Nazir, R., Jahed Armaghani, D., Maizir, H. (2014), Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN, Measurement, Vol. 57, No. 1, p. 122–131. [DOI:10.1016/j.measurement.2014.08.007]
8. Beranti M., Golashani A. and Yasrebi Sh. (2014), Determination of Bearing Capacity for Driven Piles in Sandy Soils by Using Artificial Neural Network Method, Modares Civil Engineering Journal, Vol. 14, No. 20, p. 27-36. (In Persian)
9. Padfield, C. J., and Sharrock, M. J. (1983), Settlement of Structures on Clay Soils, Construction Industry Research and Information Association (CIRIA), U.K.
10. Hwang J., Chung M., Juang D., Lyu Y., and Juang C. (2011), Practical optimization of group piles using discrete Lagrange multiplier method, Optimization and Engineering, Vol. 12, No.1-2, p. 83-109. [DOI:10.1007/s11081-010-9117-z]
11. Reul, O. and Randolph M. F. (2003), Piled rafts in overconsolidated clay: Comparison of in situ measurements and numerical analyses, Geotechnique, Vol. 53, No. 3, p. 301- 315. [DOI:10.1680/geot.2003.53.3.301]
12. Feng Yu and Jun Yang, (2012), Base Capacity of Open-Ended Steel Pipe Piles in Sand, Journal of Geotechnical and Geoenvironmental Engineering Vol. 138, Issue 9. [DOI:10.1061/(ASCE)GT.1943-5606.0000667]
13. Fellenius B. H., (1980), The Analysis of Results from Routine Pile Load Test. Ground Engineering, Geotechnical News Magazine
14. Smith E. A. (1986), Pile Driving Analysis by the Wave Equation, Journal of Soil Mechanics and Foundations, Division 86.
15. Goble G., Rausche F., and Moses F. (1970), Dynamic Studies on the Bearing Capacity of Piles - Phase III, Final Report to the Ohio Department of Highways, Case Western Reserve Univ, Cleveland, Ohio.
16. Vesic S. (1977), Design of Pile Foundation, National Cooperative Highway Research Program Synthesis of Practice, Vol. 42, Washington, DC.
17. Meyerhof G. (1976), Bearing Capacity and Settlement of Pile Foundation, Journal of the Geotechnical Engineering Division, Vol. 110, No.1, p. 197-228.
18. Coyle M. and Castello R., (1981), New Design Correlations for Piles in Sand, Journal of the Geotechnical Engineering Division, Vol. 107, p. 967-986.
19. Beraja M Das, (2016), Principles of Foundation Engineering, 7th Edition, Published by Cengage.
20. Momeni H., Maizir, H., Gofar, N., Nazir, M., (2013), Comparative Study on Prediction of Axial Bearing Capacity of Driven Piles in Granular Materials, Journal Teknologi, Vol. 61, No.3, p. 25-37. [DOI:10.11113/jt.v61.1777]
21. Khoshkho M, Keyhanina A. and Firooznia A. (2015), Case Study Investigation of Bearing Capacity of Steel Piles in Coastal Projects of Assaluyeh Region and Comparison of Results of Dynamic and Static Bearing Capacity Experiments, Second National Conference on Soil Mechanics and Engineering, Qom University of Technology. (In Persian)
22. FelleniusB., (1980), The Analysis of Results from Routine Pile Load Test, Ground Engineering, Geotechnical News Magazine.
23. Lebeau J. (2008), FE-Analysis of Piled and Piled Raft Foundations, Graz University of Technology.
24. Momeni, E. Nazir, R., Jahed Armaghani, D. and Maizir, H (2014), Prediction of Pile Bearing Capacity Using a Hybrid Genetic -based ANN, Vol. 57, No. 2, p. 122-131. [DOI:10.1016/j.measurement.2014.08.007]
25. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, New York.
26. Bavi O. and Salehi M. (2015), Genetic Algorithms and Optimization of Composite Structures, Abed Publication, Tehran. (In Persian)