دوره 14، شماره 28 - ( 10-1397 )                   جلد 14 شماره 28 صفحات 38-31 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- نیروی دریایی ارتش ج.ا.ا. - سازمان تحقیقات و جهاد خودکفایی نداجا
2- دانشگاه علوم دریایی امام خمینی (ره) نوشهر
چکیده:   (4217 مشاهده)
مدیریت انرژی کشتی‌ها برای ارتقای کارایی کشتی‌ها و کاهش انتشار گازهای گلخانه‌ای، از مهمترین مسائلی می‌باشند که در سال‌های اخیر به‌عنوان نقطه عطفی در طراحی و ساخت شناورها مورد توجه قرار گرفته است. بررسـی رونـد انـرژی و توجـه بـه تغییـرات فنـاوری و اهمیـت ضوابـط سـختگیرانه تـر مسـائل زیسـت محیطــی در سال‌های اخیر منجر به یک چالش بزرگ در رابطه با آلودگی هوا، مدیریت انرژی و همچنین مواجهه با منابع رو به اتمام سوخت‌های فسیلی شده است. سیستم‌های پیشرانش هیبریدی امروزه یکی از راهکارهایی است که برای حل این معضل دنبال می‌شود. در این مقاله پس از معرفی سیستم شناور هیبریدی، مدل‌سازی و تعیین سیستم هیبریدی مناسب برای یک شناور سطحی، مورد بررسی قرار گرفته است. سپس محاسبات و روابط حاکم بر سیستم هیبرید موازی شناور سطحی ارائه گردیده و مدل‌سازی آن برای دو شناور عادی و هیبریدی با ‏استفاده از نرم‌افزار ‏ADVISOR‏  در پلتفرم ‏سیمولینک‏ ‏متلب‏ انجام شده است. نتایج  نشان می‌دهد که شناور سطحی هیبرید موازی سبب بهبود 7% در بازدهی کلی و 1/7%در مقدار مصرف سوحت شده است. همچنین مقادیر آلاینده‌های HC و CO به‌ترتیب به میزان 44/0% و 39/0% کاهش پیدا کرده است.
متن کامل [PDF 687 kb]   (1767 دریافت)    
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: موتور اصلي، ماشين‌آلات و سيستم‌هاي الكتريكي
دریافت: 1396/8/19 | پذیرش: 1397/8/20

فهرست منابع
1. Ehsani, M., Gao, Y. and Emadi, A., (2009), Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition, CRC Press, Boca Raton London New York Washington, D.C.
2. Blair Guenther, M., (2005), Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles, Master Thesis of Applied Science, University of Victoria.
3. Laramie, J. and Dicks, A., (2002), Fuel Cell Systems Explained, John Wiley & Sons, New York.
4. http://www.hybrid-marine.co.uk.
5. Hamelin, J., Agbossou, K., Laperrière, A., Laurencelle, F. and Bose, T.K., (2001), Dynamic behavior of a PEM fuel cell stack for stationary applications, International Journal of Hydrogen Energy, Vol.26, p.625-629. [DOI:10.1016/S0360-3199(00)00121-X]
6. http://www.steyr-motors.com.
7. Nordholm, L., (2006). Development of validation methods for HEV (Hybrid Electrical Vehicle), Master Thesis of Industrial Electrical Engineering and Automation, Lund University.
8. Kheir, NA., Salman, MA. and Schouten, NJ., (2016 ), Hybrid engine performance determination using simulation with GT-drive software and comparison with diesel engine, Mathematics and Computers in Simulation, Vol.191, No.3, p.463-473. 9- Energy Information Administration - Official energy statistics from the US government, (2006), Country analysis briefs (2006-05-02).
9. U.S. Environmental Protection Agency, 40 CFR Part 86.128-00, (2006), Describing gear and driving strategies (2006-05-03).
10. Tronstad, T., Astrand, H.H., Haugom, G.P. and Langfeldt, L., (2006), Maritime Study on the Use of Fuel Cells in Shipping, DNV GL – Maritime Brooktorkai 18, 20457 Hamburg, Germany.
11. Barlow, TJ., Latham, S., McCrae, IS. and Boulter, PG., (2017), The study of improving fuel consumption in a hybrid vessel by using ADVISOR, Advanced Intelligent Mechatronics, Energy conversion and management, Vol.143, p. 20-31.
12. Farrall, SD. and Jones, RP., (2017), Energy management in an electric/heat engine hybrid powertrain using fuzzy logic, IEEE Trans Contr Syst Technol, Vol.10, No.3, p.76-94.
13. Han, J., Charpentier, J.F. and Tang, T., (2014), An Energy Management System of a Fuel Cell/Battery Hybrid Boat, Energies, Vol.7, p.2799-2820. [DOI:10.3390/en7052799]
14. Nayyar, P., (2010).The Use of Biodiesel Fuels in the U.S. Marine Industry, US Maritime Administration, Contract No. DTMA1D05007, TO090000055. 16- Boughner, A., Dalton, T. and Mako, C.D., (2010), Engineering a Class of Innovative Affordable Amphibious Assault Hybrid Warships via LHD 8: USS Makin Island, Electric Machines Technology Symposium. Philadelphia, Pennsylvania: American Society of Naval Engineers.
15. Wang, X., He, H., Sun, F., Sun, X. and Tang, H., (2013), Comparative study on different energy management strategies for plug-in hybrid electric vehicles, Energies, Vol.6, p.5656-5675. [DOI:10.3390/en6115656]
16. Tremblay, O., Dessaint, L.A. and Dekkiche, A.I., (2007), A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles, In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Arlington, VA, USA. [DOI:10.1109/VPPC.2007.4544139]
17. Magnus, M. and Jakob, T., (2010). Marine Hybrid Electric Powertrain, Thesis for master of program, Chalmers University Of Technology, Sweden.
18. Pulkrabek, W.W., (2003), Engineering Fundamentals of the Internal Combustion Engine, Second Edition, Pearson Education (US), Upper Saddle River, NJ, United States.
19. Goodenough, J.B., Abruna, H.D. and Buchanan, M.V., (2007), Basic Research Needs for Electrical Energy Storage, Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, United States.
20. Fadel, A. and Zhou, B., (2011), An experimental and analytical comparison study of power management methodologies of fuel cell–battery hybrid vehicles, Journal of Power Sources, Vol.196, p.3271-3279. [DOI:10.1016/j.jpowsour.2010.11.114]
21. Wipke, K., Cuddy, M., Barton, D., Burch, S., Johnson, V., Markel, A. and Sprik, S., (1999), ADVISOR 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis, North American EV & Infrastructure Conference and Exposition (NAEVI 99).
22. Abdin, Z., Webb, C.J. and Gray, E.M., (2016), PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters, Energy, Vol.116, p.1131-1144. [DOI:10.1016/j.energy.2016.10.033]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.