Write your message
Volume 12, Issue 24 (1-2017)                   Marine Engineering 2017, 12(24): 115-125 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moazzami H, Siadatmousavi S M, Mazaheri S. Data Assimilation for Wave Data in Persian Gulf Using WAVEWATCH-III Spectral Model . Marine Engineering 2017; 12 (24) :115-125
URL: http://marine-eng.ir/article-1-470-en.html
1- Iran University of Science and Technology
2- Iranian National Institute for Oceanography and Atmospheric Science
Abstract:   (4722 Views)

The major problems in modeling of different oceanographic and meteorological parameters are limitations in numerical methods and human incomplete knowledge in physical processes involved. As a result, significant differences between the results of these models and in situ observations of these parameters might exist. One of the powerful solutions for decreasing the forecast errors in the models is to use data assimilation technique. In this study the optimal interpolation data assimilation method is employed which is based on statistical rules. Moreover, the quick Canadian method is used to optimize the data assimilation method used in model. Model assessment is performed by comparison between running wave model with and without using data assimilation and SAR wave data in Persian Gulf. It shows that using data assimilation in WAVEWATCH-III model reduces the error in wave height predictions significantly.

Full-Text [PDF 914 kb]   (2209 Downloads)    
Type of Study: Research Paper | Subject: Offshore Hydrodynamic
Received: 2016/02/2 | Accepted: 2016/11/27

References
1. Gandin, L. S. and Hardin, R., (1965), objective analysis of meteorological fields, Israel program for scientific translations Jerusalem, vol. 242.
2. Kalman, R. E., (1960), A new approach to linear filtering and prediction problems, Journal of Fluids Engineering, vol. 82, pp. 35-45,.
3. Evensen, G., (2003), The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean dynamics, vol. 53, pp. 343-367.
4. Livings, D., (2005), Aspects of the ensemble Kalman filter, Reading University Master Thesis
5. Kalnay, E. (2003), Atmospheric modeling, data assimilation, and predictability, Cambridge university press.
6. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P., (1996), Dynamics and modelling of ocean waves Cambridge university press.
7. Lionello, P., Günther, H. and Hansen, B. (1995), A sequential assimilation scheme applied to global wave analysis and prediction, Journal of Marine Systems, vol. 6, pp. 87-107, 1995.
8. Holthuijsen, L., Booij, N., Van Endt, M., Cakes, S. and Soares, C. G., (1997), Assimilation of buoy and satellite data in wave forecasts with integral control variables, Journal of marine systems, vol. 13, pp. 21-31.
9. Hasselmann, S., Lionello, P. and Hasselmann, K., (1997), An optimal interpolation scheme for the assimilation of spectral wave data, Journal of Geophysical Research, vol. 102, p. 15823.
10. Voorrips, A., Makin, V. and Hasselmann, S., (1997), Assimilation of wave spectra from pitch‐and‐roll buoys in a North Sea wave model, Journal of Geophysical Research: Oceans (1978–2012), vol. 102, pp. 5829-5849.
11. Siddons, L., Wyatt, L. and Wolf, J., (2009), Assimilation of HF radar data into the SWAN wave model, Journal of Marine Systems, vol. 77, pp. 312-324.
12. Sannasiraj, S. and Goldstein, M., (2009), Optimal interpolation of buoy data into a deterministic wind–wave model, Natural hazards, vol. 49, pp. 261-274.
13. Waters, J., Wyatt, L. R., Wolf, J. and Hine, A., (2013), Data assimilation of partitioned HF radar wave data into Wavewatch III, Ocean Modelling, vol. 72, pp. 17-31.
14. Corbella, S., Pringle, J. and Stretch, D. D., (2015), Assimilation of ocean wave spectra and atmospheric circulation patterns to improve wave modelling, Coastal Engineering, vol. 100, pp. 1-10.
15. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P., (1996), Dynamics and modelling of ocean waves, Cambridge university press.
16. Tolman, H., Accensi, M., Alves, H., Ardhuin, F., Bidlot, J., Booij, N. et al., (2014) User manual and system documentation of Wavewatch III version 4.18.
17. Tolman H. L. and Chalikov, D., (1996), Source terms in a third-generation wind wave model, Journal of Physical Oceanography, vol. 26, pp. 2497-2518.
18. Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A. et al., (2009), Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation, arXiv preprint arXiv:0907.4240.
19. Donelan, M. A., Babanin, A. V., Young, I. R. and Banner, M. L., (2006), Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input, Journal of physical oceanography, vol. 36, pp. 1672-1689.
20. Babanin, A. V., Banner, M. L., Young, I. R. and Donelan, M. A., (2007), Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking, Journal of Physical Oceanography, vol. 37, pp. 2764-2775.
21. Rogers, W. E., Babanin, A. V. and Wang, D. W., (2012), Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations, Journal of Atmospheric and Oceanic Technology, vol. 29, pp. 1329-1346.
22. Moeini, M. H., Etemad-Shahidi, A., Chegini, V. and Rahmani, I., (2012), Wave data assimilation using a hybrid approach in the Persian Gulf, Ocean Dynamics, vol. 62, pp. 785-797.
23. Emery, K. O. (1956), Sediments and water of Persian Gulf, AAPG Bulletin, vol. 40, pp. 2354-2383.
24. Purser, B. and Seibold, E., (1973), The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf, in The Persian Gulf, ed: Springer, pp. 1-9.
25. The General Bathymetric Chart of the Oceans. Available: www.Gebco.net/data-products/gridded-bathymetry-data
26. Kanamitsu, M., (1989), Description of the NMC global data assimilation and forecast system, Weather and Forecasting, vol. 4, pp. 335-342.
27. Kanamitsu, i., Alpert, J., Campana, K., Caplan, P., Deaven, D., Iredell, M. et al., (1991), Recent changes implemented into the global forecast system at NMC, Weather and Forecasting, vol. 6, pp. 425-435.
28. Derber, J. C., Parrish, D. F. and Lord, S. J., The new global operational analysis system at the National Meteorological Center, Weather and Forecasting, vol. 6,
29. Jaiswal, N., Haynesworth, S. E., Caplan, A. I. and S. P. Bruder, (1997), Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro, Journal of cellular biochemistry, vol. 64, pp. 295-312
30. Polavarapu, S., Ren, S., Rochon, Y., Sankey, D., Ek, N., Koshyk, J. et al., (2005), Data assimilation with the Canadian middle atmosphere model, Atmosphere-Ocean, vol. 43, pp. 77-100.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.