شبیه سازی عددی امواج و مد ناشی از توفان گنو در خلیج چابهار

لیلا مشهدی"*، ناصر حاجی زاده ذاکر"، محسن سلطانپور"، سعید مقیمی ً

دانشجوی دکتری، دانشکده محیط زیست دانشگاه تهران؛lilymashhadi@ut.ac.ir ۲ دانشیار دانشکده محیط زیست دانشگاه تهران؛ nhzaker@gmail.com ۳ دانشیار دانشکده مهندسی عمران دانشگاه خواجه نصیر طوسی؛ soltanpour@kntu.ac.ir ۴ دانشیار پژوهشی، دانشگاه ایالتی ارگون؛ moghimi@coas.oregonstate.edu

اطلاعات مقاله	چکیدہ
ی <i>یخچه مقاله:</i> یخ دریافت مقاله: ۱۳۹۲/۰۳/۰۳ یخ پذیرش مقاله: ۱۳۹۲/۰۷/۱۶ یخ انتشار مقاله: ۱۳۹۲/۰۷/۳۰	توفان گنو قویترین توفان ثبت شده در دریای عرب بوده که باعث بوجود آمدن خسارت در بخشهایی از نواحی جنوبی ایران گردید. در این مقاله مدلسازی مشخصات امواج و مد ناشی از توفان گنو در خلیج چابهار با استفاده از مدل موج SWANو مدل هیدرودینامیک GETM در طول یک دوره یکماهه از ۱۵ می تا ۱۵ ژوئن ۲۰۰۷ ارائه شده است. مقایسه نتایج حاصل از مدلسازی مشخصات موج با سه ایستگاه
<i>کلمات کلیدی:</i> GETM ،SWAN امواج توفان مد ناشی از توفان خلیج چابهار	اندازه گیری واقع در خلیج چابهار نشان میدهد که مشخصات موج با دقت قابل قبول در طول دوره وقوع توفان گنو برآورد شده است. حداکثر ارتفاع موج شاخص در طول دوره وقوع توفان در بیرون خلیج چابهار به بیش از شش متر و در داخل خلیج به حداکثر چهار متر میرسد. همچنین بیشترین مد ناشی از توفان در سواحل غربی چابهار در روز ششم ژوئن و تقریبا برابر با ۵۰ سانتیمتر است.

Numerical Simulation of Waves and Storm Surge Induced by the GonuTropical Cyclone in the Chahbahar Bay Area

Leila Mashhadi¹*, NaserHajizadehZaker², Mohsen Soltanpour³, SaeedMoghimi⁴

¹ Ph.D. Student, Faculty of Environmental Studies Tehran University; lilymashhadi@ut.ac.ir

² Associate Professor, Faculty of Environmental Studies Tehran University; nhzaker@gmail.com

³ Associate Professor, Department of Civil Engineering K. N. Toosi University of Technolog; soltanpour@kntu.ac.ir

⁴ Research Associate, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University; moghimi@coas.oregonstate.edu

ARTICLE INFO

Article History: Received: 24 May 2013 Accepted: 6 Oct. 2013 Available online: 22 Oct. 2013

Keywords: SWAN GETM Storm Waves Storm Surge Chahbahar Bay

ABSTRACT

The Gonu tropical cyclone is the strongest storm in the Arabian Sea in which has cause damage in the Iranian south coastlines. The aim of the current paper is to numerically simulate the wave's characteristics as well as the storm surge during the Gonu event by employing the SWAN wave model and the GETM hydrodynamic model. The simulation duration is one month i.e. from15 May to 15 June 2007. The wave characteristics are compared with the measured data in three measurement stations. The results show that the wave characteristics are reasonably simulated during the Gonu storm event so that the significant wave height is reached up to six meters and the corresponding height was four meters, respectively, outside and inside the Chahbahar bay area. The results show that the storm surge has reached up to 50centimeters in the Chahbahar coastlines which are corresponding to the 6th day of the Gonu storm.

۱– مقدمه

توفان یکی از بلایای طبیعی است که اکثر نواحی ساحلی حاشیه اقیانوسها و دریاها را تهدید می کند. تحقیقات انجام یافته نشان میدهد با افزایش جهانی دمای سطحی آب دریاها، تعداد و شدت توفانها از سال ۱۹۷۰ افزایش یافته است [۲و۱]. همچنین آمارها نشان میدهند که هر سال افزون بر ۸۰ توفان گرمسیری در جهان روی میدهد [۳] که از این تعداد حدودا ۶/۵ درصد از آنها در جهان روی میدهد [۳] که از این تعداد حدودا ۶/۵ درصد از آنها در در شمال اقیانوس هند اتفاق میافتند [۴]. توفانهای استوایی دریای عرب بطور کلی به دو دوره فصلی تقسیم میشوند: دوره پیش از مونسون (ماه می) و دوره پس از مونسون (ماههای اکتبر و نوامبر) و دوره انتقالی (ماههای ژوئن و سپامبر) که در این دورهها تعداد زیادی از توفان استوائی شکل می گیرد.

عموما توفانهایی که در دریای عرب تشکیل میشوند تمایل دارند که به سمت غرب (عمان) و شمال (پاکستان و هند) حرکت می-نمایند و به ندرت به دریای عمان وارد میشوند [۵]. آمار انتشار یافته توسط سازمان هواشناسی هند طی سالهای ۱۹۷۰–۱۸۷۷ نشان میدهد که تعدادی از این توفانهای قوی وارد دریای عمان شده که میتوانند سواحل ایران و عمان را تحت تاثیر خود قرار دهند. از این دسته می توان توفانهای ژوئن ۱۸۸۹ ، ژوئن ۱۸۹۰ ، می ۱۸۹۸ و آوریل ۱۹۰۱ و ۲ می ۸۶۵ قبل از میلاد را نام برد [۷ و].

در اوایل ماه ژوئن سال ۲۰۰۷،توفان گنو به منطقه دریای عمان وارد شد و بر روی مسیر غیر معمولی حرکت کرده ونسبت به پدیده های معمول منطقه، مسافت بیشتری را به سمت غرب و شمال پیمود و امواج بلندی در امتداد خطوط ساحلی ایران و عمان پدید آورد. با توجه به پدیده گرمایش زمین و افزایش تعداد توفانها امکان وقوع مجدد توفانهایی با شدت و قدرت گنو در دریای عرب وجود دارد که به عنوان نمونه توفان فت پس از سه سال از تاریخ ۳۱ می

تا ۶ ژوئن ۲۰۱۰ بر روی دریای عرب شکل گرفت [۸]. در شکل ۱ مسیر حرکت این توفانهای تاریخی، گنو و فت نشان داده شده است. در چند دهه اخیر سواحل ایران بخصوص سواحل جنوبی به دلایـل مختلف، عرصه فعالیتهای گوناگون در زمینه های تجاری، صیادی و امور مرتبط با صنعت نفت قرار گرفته و در آینـده انجـام فعالیتهـای جدید با حجم وسیع تری قابل پیش بینی میباشد. با توجه به آنکـه این نواحی همواره در معرض روبرو شدن با خطراتی همچون توفـان هستند، شناخت رفتار محیط ساحل در مواجه با توفانهای حارهای و جاری شدن حجم زیاد سیلاب بسیار مهم میباشد.

امروزه پیش بینی امواج و مد ناشی از توفان در مناطق ساحلی با استفاده از مدلهای عددی به عنوان یک ابزار بسیار کارآمد رو به افزایش میباشد. در طی دو دهه اخیر مدلهای طیفی مـوج تحـت عنوان مدلهای نسل سوم نظیر مدلهای WAM ، TOMAWAC،WAVEWATCH III وSWAN توسعه يافته است[۱۲ و۱۱، ۱۰، ۹]. مدل SWAN در بسیاری از زمینه ها مورد استفاده قرار گرفته است. این مدل علاوه بر قابلیت کاربرد در مقیاس آزمایشگاهی و اقیانوسی، توانایی شبیه سازی امواج ناشی از توفان را دارد همانطوری که در تحقیقات انجام یافته قبلی بخوبی توانسته این امواج را شبیه سازی نماید [۱۳ تا ۲۱]. گلشنی و تائبی (۲۰۰۸) ارتفاع موج شاخص ناشی از توفان گنو در دریای عمان را با استفاده از مدل Mike21 شبیه سازی نمودند. آنها در این مطالعه بیشینه ارتفاع موج شاخص در محل بویه چابهار را ۳/۸ متر برآورد نمودند [۲۲]. در تحقیق دیگری که توسط، خانیکی و همکاران در سال ۲۰۰۹ انجام یافته ارتفاع موج شاخص ناشی از شش توفان حارمای در اقیانوس هند راشبیه سازی نمودند [۲۳]. دیباج نیا و همکاران در سال ۲۰۰۹ بیشینه ارتفاع امواج شاخص ناشی از توفان گنو و توفان تاریخی سال ۱۸۸۹ در دریای عرب راشبیه سازی نمودند [۵].

شکل ۱ - مسیر حرکت توفانهای تاریخی، توفان گنو و فت

همچنین در مطالعه دیگری در سال ۲۰۰۷ با استفاده از روش مونت کارلو و تولید ۲۰۰ توفان مصنوعی در دریای عمان بیشینه ارتفاع موج شاخص مورد بررسی قرار گرفته است[۲۴].

در خصوص مدلسازی مد ناشی از توفان گنو تحقیقاتی در سواحل کشور عمان توسط فریتز و همکاران در سال ۲۰۱۰ انجام شد [۲۵]. در تحقیق دیگری که توسط داب و همکاران در سال ۲۰۰۹ انجام یافته حداکثر مد ناشی از توفان گنو در سواحل کشور عمان شبیه سازی شده است [۲۶].

جزئیاتی از مطالعه بر روی پدیده مد توفان در خلیج بنگال و دریای عرب در مراجع [۲۷ تا ۴۰] آورده شده است.

در این تحقیق ابتدا مشخصات امواج ناشی از توفان گنو در سواحل خلیج چابهار با استفاده از مدل SWAN شبیه سازی و با اندازه گیریهای میدانی کالیبره و صحت سنجی شده و دقت نتایج با استفاده از پارامترهای آماری مورد بحث قرار گرفته است. همچنین توزیع ارتفاع موج شاخص در خلیج چابهار بررسی شده است. سپس با استفاده از مدل هیدرودینامیک GETM ، رقوم سطح آب شبیه سازی و با استفاده از دادههای میدانی کالیبره و صحت سنجی شده و در نهایت به بررسی میزان مد ناشی از توفان و توزیع ارتفاع سطح آب در خلیج چابهار در طول دوره وقوع توفان پرداخته شده است.

۲- توفان گنو

دریای عمان و سواحل کشورهای همجوار آن (ایران و عمان) تحت تاثیر توفانهای استوایی قرار دارند. بدون شک توفان گنو که در اوایل ژوئن ۲۰۰۷ (۷–۱ ژوئن) شکل گرفت قویترین توفان ثبت شده در شمال اقیانوس هند در مجاورت سواحل ایران بوده است. توفان گنو باعث وارد آمدن حدود ۴ بیلیون دلار خسارت و مرگ حداقل ۴۹ نفر در سواحل عمان و حدود ۲۱۵ میلیون دلار خسارت و مرگ ۲۳ نفر در سواحل جنوبی ایران گردیده است [۲۵].

توفان گنو با توجه به گستردگی آن باعث بوجود آمدن خسارتهای فراوان بر سواحل استانهای سیستان و بلوچستان و هرمزگان شد. این توفان با سرعتی برابر ۱۵۰ کیلومتر بر ساعت و بارشی در حدود ۱۵۰ میلی متر در سواحل دریای عمان علاوه بر وارد آمدن خسارتهای فراوان، تغییرات ژئومورفولوژیکی زیادی در خطوط این مناطق به همراه داشته است[۴۱]. علاوه بر آن تحقیقات انجام یافته در خلیج عمان نشان میدهد که توفان گنو منجر به خرابیهای عمده در تودههای مرجانی شده است [۴۲].

۳– اندازه گیریهای میدانی

خلیج چابهار بزرگترین خلیج ایران در حاشیه کرانههای دریای عمان است.از آنجایی که این بخش از سواحل ایران بدلیل موقعیت جغرافیایی به دریای آزاد راه دارد یکی از مهمترین مناطق دریایی ایران است.

پروژه مطالعاتی مونیتورینگ و مدلینگ سواحل استانهای سیستان و بلوچستان و بوشهر در سال ۲۰۰۶ توسط سازمان بنادر و دریانوردی ایران آغاز بکار کرد. فاز اول این طرح شامل اندازه گیری میدانی به مدت یک سال (سپتامبر ۲۰۰۶ تا آگوست ۲۰۰۷) در خلیج چابهار بود. این اندازه گیریها شامل اندازه گیری موج و جریان در شش ایستگاه، اندازه گیری سطح آب در سه ایستگاه و اندازه گیری باد در یک ایستگاه، اندازه گیری سطح آب در سه ایستگاه و اندازه گیری باد در این تیکاه بود. در شکل ۲ موقعیت قرارگیری ایستگاههای اندازه تگیری در خلیج چابهار در حین توفان گنو نشان داده شده است. در این شکل AQ معرف AQ معرف ایستگاه اندازه گیری باد میباشد. در جدول ۱ مشخصات ایستگاههای اندازه گیری و دوره زمانی ثبت داده ها آورده شده است.

با در نظر گرفتن زمان وقوع توفان گنو، داده های اندازه گیری شده در خلیج چابهار تنها دادههای ثبت شده قابل دسترس در حین ایـن توفان میباشد.

شکل ۲- موقعیت دستگاههای اندازه گیری در خلیج چابهار حین وقوع توفان گنو

موقعيت نصب				
عرض جغرافيايي	طول جغرافيايي	عمق نصب	بازه زمانی اندازه گیری	نام دستگاه
(درجه شمالی)	(درجه شرقی)	(متر)		
20/626016	8•/ ۵ •۲۱۸۲	-٣	Υ··۶ /• λ /Υ ١ Υ·Υ/•٩/•٣	AQ1
20/27250	۶۰/۴۳۵۸۳۳	-11	$\gamma \cdot \cdot \gamma / \cdot \Delta / \gamma \gamma - \gamma \cdot \cdot \gamma / \cdot \gamma / 1 \cdot$	AQ2
TD/TVT9AV	8./01010V	$-9/\Delta$	$\gamma \cdot \cdot \gamma / \cdot \beta / \cdot \gamma - \gamma \cdot \cdot \gamma / \cdot \beta / \gamma \cdot$	AQ3
20/229018	۶۰/۵۹۴۴۶۹	-1•	$\gamma \cdot \cdot \beta / \cdot \lambda / \gamma $ $\gamma \cdot \gamma / \cdot \eta / \cdot \gamma$	AW1
۲۵/۳۷۲۹۵۶	8./21222V	-۳۰	7	AW2
۲۵/۲۹۱۶۰۵	8./4149.1	-11		AW3
۲۵/۳۴۹۱۷	8.1094184	-4	$\gamma \cdot \cdot \beta / \cdot \lambda / \gamma = \gamma \cdot \cdot \gamma / \cdot \eta / \cdot \gamma$	TG1
۲۵/۲۶۸۷۰۵	8.1444.1	$-\mathfrak{K}/\Delta$	T • • Y/ • T/ • FT • • Y/ • 9/ • T	TG2
۲۵/۳۱۵۸۰۸	8./298641	-۴	Υ··۶/·λ/Υ۶—Υ··Υ/·۶/·Υ	TG3
۲۵/۲۸۲۲۳۶	8.1824727	+9	$\nabla \cdot \cdot \vartheta / \nabla \nabla / \cdot \Delta $	WS1

جدول ۱- مشخصات ایستگاههای اندازه گیری و دوره زمانی ثبت داده ها

۴-روش انجام تحقيق

در این بخش ابتدا به معرفی مدلهای SWAN و GETM پرداخته شده است. سپس محدوده مدلسازی و دادههای ورودی به مدلها بحث شده است.

1-۴ مدل SWAN

در این مطالعه، از مدل SWAN نسخه ۴۰/۸۵ برای شبیه سازی امواج استفاده شده است.مدل موجSWAN توسط دانشگاه فنی دلفت هلند توسعه یافته است [۱۲]. مدل SWAN شاخه ای از نسل سوم مدل آبهای عمیق است که کاملا طیفی (در همه فرکانس ها و جهت ها) میباشد و یک مدل عددی موج برای بدست آوردن تخمین های واقعی از پارامترهای امواج در مناطق ساحلی، دریاچه و خورها از شرایط باد، بستر و جریان است. شبیه سازی مشخصه های امواج در این مدل براساس حل عددی معادله چگالی فعال بنا شده است.در مدل SWANتغییر شکل طیف موج براساس فعال بنا شده است.در مدل SWAN

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial \lambda}C_{\lambda}N + \frac{1}{\cos\varphi}\frac{\partial}{\partial\varphi}C_{\varphi}N\cos\varphi + \frac{\partial}{\partial\sigma}C_{\sigma}N + \frac{\partial}{\partial\theta}C_{\theta}N = \frac{S}{\sigma}$$
(1)

جمله اول سمت چپ معادله فوق بیانگر میزان تغییرات چگالی فعال نسبت به زمان، جمله دوم و سوم نشان دهنده انتشار چگالی فعال با سرعتهای $\mathcal{A}_{\varphi}, c_{\lambda}$ در فضای مکانی \mathcal{A} (طول جغرافیایی) و فعال با سرعتهای $\mathcal{A}_{\varphi}, c_{\lambda}$ در فضای مکانی \mathcal{A} (طول جغرافیایی) و تعییرات عمق و وجود جریان با سرعت انتشار \mathcal{C}_{σ} ، جمله پنجم بیان کننده انتشار در فضای جهتی با سرعت انتشار \mathcal{C}_{θ} میباشد

که به علت پدیده انکسار در تغییرات عمق و جریان ایجاد می شود. ترم S در سمت راست معادله (۱) نشان دهنده جمله چشمه و چاه است و عامل افزایش یا کاهش انرژی در سیستم می باشد، که در آبهای عمیق شامل انرژی وارده از باد، اتلاف بستر، اتلاف ناشی از سفیدک در راس موج^۱و اندرکنش چهارتایی غیرخطی امواج می-شوند. در حالی که در آبهای کم عمق عوامل دیگری نظیراتلاف ناشی از شکست در اثر کم عمقی، اتلاف ناشی از اندرکنش آشفتگی و میدان موج و اندرکنش غیرخطی سه تایی امواج نیز دارای اهمیت می باشند. جزئیات بیشتر در راهنمای مدل آورده شده است [۴۳].

۲-۴ مدل GETM

ایده اولیه مدل GETM در سال ۱۹۹۷ در کشور فرانسه بنا نهاده شد و در سال ۲۰۰۱ به یک مدل باروکلینیک گسترش یافت. این مدل بخصوص برای استفاده در مناطق کم عمق همراه با جزر و مدهای بزرگ و در نواحی که اختلاط عمودی شدید است، مناسب می باشد. GETM یک مدل سه بعدی است که توانایی شبیه سازی بیشتر پروسههای مهم هیدرودینامیکی و ترمودینامیکی نظیر جریانات، درجه حرارت، شوری، تراز سطح آب، دانسیته و کاراکترهای اختلاط ناشی از توربولنت در آبهای طبیعی را دارد. یکی از ویژگیهای برجسته و مفید این مدل قابلیت مدلسازی پروسه خشک و تر شدن میباشد. از دیگر تواناییهای مدل آنست که قابلیت انتخاب سیستم در جهت عمودی به صورت Z یا σ یا تركيبى بين اين دو وجود دارد. اين قابليت امكان ايجاد دقت عمودی کافی و مناسب در تمام نقاط شبکه را فراهم میسازد. یکی از بهبودهای اخیر مدل وجود گزینههای بیشتر جهت محاسبه گرادیان فشار داخلی است که موجب کاهش خطا و تولید مجدد اثرات ناشی از گرادیان فشار غیر هیدرواستاتیکی می گردد [۴۴].

۴–۳– محدوده مدلسازی و داده های ورودی

محدوده مدلسازی برای هر دو مدل موج و هیدرودینامیک شامل سه محدوده دریای عرب، دریای عمان و خلیج چابهار در شمال اقیانوس هند میباشد که از روش لانهای^۲ در دو مرحله برای شبیه سازی استفاده شده است. در شکل ۳ محدوده مدلسازی درسه سطح و ژرفاسنجی هر سطح نشان داده شده است. محدوده مدل بزرگ(شکل ۲۵) از طول جغرافیایی ۴۷ تا ۷۵ درجه شرقی و عرض جغرافیایی ۱۴ تا ۳۲ درجه شمالیبا دقت مکانی چهار دقیقه (۱/۱۵ درجه) در نظر گرفته شده است. مدل متوسط (شکل ۲۵) در محدوده طول جغرافیایی ۵۷/۵ تا ۶۲/۷ درجه شرقی و ۲۲/۵ تا ۸۵/۸ شمالی با دقت مکانی یک دقیقه (۱/۶۰ درجه) و مدل

کوچک (شکل ۳۵)از طول جغرافیایی ۶۰/۳۲۰۸ تا ۶۰/۷۹۶۵ درجه شمالی با شرقی و عرض جغرافیایی ۲۵/۳۲۰۸ تا ۲۵/۴۴۴۵ درجه شمالی با مورد نیاز برای ناحیه بزرگ (دریای عرب)و ناحیه متوسط مدلسازی (دریای عمان) از سایت ETOPO2 استخراج شدند [۴۵]. دادههای ژرفاسنجی مدل لانهای کوچک (خلیج چابهار) از اطلاعات هیدروگرافی سازمان نقشهبرداری بدست آمدند. این دادهها پس از تسطیح نمودن به ترتیب با تعداد ۲۷۱* ۲۱۹، ۱۹۹ «۳۳۲ و در اسلاحی مدوده های بزرگ، متوسط و کوچک به هر دو مدل SWAN و GETM معرفی گردید.

شکل ۳ - محدوده مدلسازی در سه سطح و ژرفاسنجی آن (متر)

۴–۳–۱– داده های هواشناسی

شبیهسازی امواج و هیدرودینامیک مدل در دوره زمانی یک ماهه ۱۵ می تا ۱۵ ژوئن۲۰۰۷ به صورت پذیرفته است. دادههای ورودی مورد نیاز برای هر دو مدل علاوه بر دادههای عمق-سنجی،شامل دادههای هواشناسی، و شرایط مرزی میباشد به شرح زیر آماده و به هر دو مدل معرفی گردید:

دادههای هواشناسی مورد استفاده در مدل GETMشامل پارامترهای سرعت باد در ارتفاع ۱۰ متری، فشار متوسط از سطح دریا ، دما در ارتفاع دو متری از سطح آب، ابرناکی کل و بارش است که به مدت یک ماه و با دقت مکانی ۰/۳۳ درجه به صورت

میانگین ۶ ساعته از دادههای NCEP استخراج و با ساختار NETCDF آماده و به مدل معرفی گردید [۴۶].

ما عار المال المالية وبالمال لمربي لروي الرابية داده هاى مورد نياز هواشناسى در مدل SWAN سرعت باد در دو جهت عمودى و افقى در ارتفاع ١٠ مترى بر روى منطقه است كه از دادههاى باد NCEP استفاده گرديد. لازم به ذكر است به دليل اينكه داده هاى هواشناسى NCEP از لحاظ مكانى و زمانى در دوره زمانى وقوع توفان گنو (اول تا هفتم ژوئن) از دقت كافى برخوردار نبودند ميدان باد و فشار توفان گنو با استفاده از برنامه برخوردار نبودند ميدان باد و فشار توفان گنو با استفاده از برنامه از را برنامههاى نرم افزار Mike استفاده از چندين ورودى شامل موقعيت جغرافيايى مركز توفان، بيشينه سرعت، فشار مركز توفان، فشار خنثى و شعاع

سرعت حداکثرتولید شد. مشخصات مورد نیاز توفان از سایت JTWC استخراج و به مدل CWGمعرفی شد [۴۷].

۴-۳-۴-شرایط مرزی

با توجه به منطقه مورد مطالعه برای مدل بزرگ تنها مرز باز مدل موج و هیدرودینامیک بر روی عرض ۱۴ درجه شمالی می-باشد. برای مدل GETM مقادیر سطح آب برای مرز باز بر روی عرض ۱۴ درجه شمالی از مدل جهانی HYCOM با دقت مکانی ۱/۱۲درجه استخراج و پس از میانه یابی با دقت مکانی چهار دقیقه و دقت زمانی ۳۰ دقیقه برای مرز مدل آماده گردید. همچنین مقادیر جزر و مدی سطح آب برای مرز باز با استفاده از مدل جهانی OTPS با دقت مکانی چهار دقیقه و دقت زمانی ۳۰ دقيقه شبيه سازى و با مقادير حاصل از مدل HYCOM جمع و به صورت فایل NETCDF آماده و به مدل GETM معرفی گردید. همانگونه که در شکل ۳ مشاهده می شود هر دو مدل لانه-ای متوسط و کوچک دارای سه مرز باز جنوبی، شرقی و غربی است که مقادیر شرایط مرزی برای هر یک به ترتیب از اجرای مدل بزرگ و متوسط در طول دوره شبیه سازی بدست آمده است. در مدل SWAN مشخصات موج (ارتفاع، پريود و جهت موج) بر روی مرز ۱۴ درجه شمالی برای مدل بزرگ از دادههای سایت ECMWF با دقت مکانی ۱/۵ درجه استخراج و به صورت یک سری فایل TPAR به عنوان شرایط مرزی معرفی گردید [۴۸]. مقادیر شرایط مرزی هر دو مدل لانهای همانند مدل هیدرودینامیک از اجرای مدل بزرگتر بدست آمد و به مدل معرفی گردید.

۵- نتایج

۵-۱- کالیبراسیون و صحت سنجی مدل SWAN

مدل SWANدر طول دوره مدلسازی یک ماهه به صورت غیرایستا و در مختصات کروی در سه مرحله انجام شد. برای مدل بزرگ با گام زمانی ۲۰ دقیقه و برای مدل لانهای متوسط و کوچک به ترتیب با گام زمانی ۱۰ دقیقه و یک دقیقه اجرا گردید. فضای طیفی به صورت ۲۸ قطعه فرکانسی و ۲۴ قطعه جهتی گسسته سازی شد. فضای جهتی کل ۳۶۰ درجه را پوشش داده و فضای فرکانسی با حداقل ۲۰/۴ و حداکثر ۱ هرتز در نظر گرفته شده است.

اطلاعات ثبت شده مشخصات موج بوسیله سه دستگاه AWAC واقع در خلیج چابهار از ۱۵ می تا ۱۵ ژوئن به منظور کالیبراسیون

و صحت سنجی نتایج حاصل از مدلسازی مورد استفاده قرار گرفته است (شکل ۲). پارامتر مورد استفاده در کالیبراسیون مدل ضریب سفیدک راس موج (cds2) انتخاب گردید که براساس حداقل نمودن خطای مدلسازی در ارتفاع موج نتایج حاصل مقدار این ضریب ^{۵-}۱۰ *۱/۳۶ برای دریای عرب انتخاب شد.

در شکلهای ۴ ، ۵ و ۶ نتایج حاصل از مقایسه مشخصات موج حاصل از مدلسازی و اطلاعات ثبت شده در هر سه دستگاه نشان داده شده است. همانگونه که در این اشکال مشاهده می شود ارتفاع موج شاخص (Hs) مدلسازی شده در هر سه دستگاه از دقت خوبی برخوردار می باشند. نتایج شبیه سازی میانگین جهت موج (MWD) در دستگاههای AW2 و AW3 از دقت قابل قبولی برخوردار بوده در حالیکه در دستگاه AW1 بالا دست بر آورد شده است. عدم تطابق جهت موج در دستگاه 14 می تواند بدلیل تاثیر موج شکن شهید بهشتی و تاثیر انعکاس امواج بر روی داده-های ثبت شده در این دستگاه باشد. نتایج بررسی داده های طیف جهتی موج نشان می دهد که طیف حاصل شامل دو دسته موج غالب رفتی و برگشتی در جهات مختلف است که دستگاه قادر به تفکیک آنها نبوده و بنابراین عدد گزارش شده توسط دستگاه باشد.

همانگونه که در اشکال ۴ ، ۵ و ۶ مشاهده می شود مقادیر پریود پیک (Tp)مدلسازی شده در هر سه دستگاه نسبت به مقادیر ثبت شده بجز در دوره وقوع توفان پایین دست برآورد شدهاند. این امر میتواند بدلیل عدم وجود امواج با پریود بلند دورآ^۳ در مدلسازی باشد. از آنجایی که سواحل جنوبی ایران بدلیل موقعیت جغرافیایی به دریای آزاد راه دارد تحت تاثیر امواج دورآی جنوب است [۴۹]. منطقه مورد مطالعه در این تحقیق بخشهایی از نیمکره شمالی بوده و امواج دورآیی که منشا آنها قطب جنوب است در این مدلسازی لحاظ نشدهاند. بعلاوه امواجی که از سمت جنوب حرکت مینمایند با گذشت زمان از ارتفاع آنها کاسته شده، در حالیکه پريود آنها تغيير نمى كند [٥٠]. بنابراين يكى از منابع خطا مى تواند حدود منطقه مدلسازی و شرایط مرزی بدست آمده از سایت ECMWF باشند. بعلاوه یکی دیگر از دلایل عدم تطابق می تواند عدم دقت کافی در داده های باد از لحاظ مکانی و زمانی باشد. به منظور تخمین کلی کارآیی مدل در بخش بعدی براساس شاخص-های آماری بحث شده است.

[DOR: 20.1001.1.17357608.1392.9.17.8.0]

Downloaded from marine-eng.ir on 2025-06-27

شکل ۴- مقایسه بین ارتفاع موج شاخص، پریود پیک و جهت متوسط موج انداره گیری شده و شبیه سازی شده در دستگاه AW1

شکل ۵-مقایسه بین ارتفاع موج شاخص، پریود پیک و جهت متوسط موج انداره گیری شده و شبیه سازی شده در دستگاه AW2

شکل ۶- مقایسه بین ارتفاع موج شاخص، پریود پیک و جهت متوسط موج انداره گیری شده و شبیه سازی شده در دستگاه AW3

است که نشان می دهد که مدل توانسته با دقت قابل قبول و

خوبی ارتفاع موج شاخص را در هر سه دستگاه برآورد نماید. میزان

پارامتر انحراف پريود قله طيف در دستگاههاي AW1 ، AW1 و

AW3 به ترتیب برابر با ۲/۴۴ - ۲/۵۴ - ۲/۵۴ و ۳/۴۳ - ثانیه است که

نشان میدهد در هر سه دستگاه پریود نسبت به مقادیر ثبت شده پایین دست برآورد شده است. پارامتر انحراف میانگین جهت موج در هر سه دستگاه AW1 ، AW3 و AW3 به ترتیب ۲۶/۰۴ ، ۱/۰۹ و ۵/۲۱ درجه برآورد شده است که نشان میدهد جهت موج در دستگاه AW1 بیش از دو دستگاه دیگر نسبت به مقادیراندازه-گیری شده دست بالا پیش بینی شده است. نتایج حاصل نشان

میدهد که بیشترین پراکنـدگی در Tp و کمتـرین پراکنـدگی در

میانگین جهت موج در هر سه دستگاه وجود دارد و پراکندگی

بیشینه در نتایج شبیه سازی جهت متوسط موج در دستگاه

AW1 نسبت به دیگر دستگاهها مشاهده می شود.

۵-۲- ارزیابی خطا

به منظور تخمین کلی از کارآیی مدل SWAN، از پارامترهای انحراف و شاخص پراکندگی برای مقایسه مقادیر اندازه گیری شده و مدلسازی شده به شرح زیر استفاده شده است:

$$Bias = \sum_{i=1}^{N} \frac{1}{N} (S_i - O_i)$$
⁽⁷⁾

$$SI = \frac{\sqrt{\sum_{i=1}^{N} \frac{1}{N} (S_i - O_i)^2}}{\frac{1}{N} \sum_{i=1}^{N} O_i}$$
(7)

 O_i در روابط فوق SI شاخص پراکندگی، N تعداد کل داده ها O_i داده های اندازه گیری شده S_i مقادیر بدست آمده از مدل می-باشند. جدول ۲ خلاصه تحلیل آماری مشخصات موج مدل شده با مدل SWAN در طول دوره شبیه سازی در هر سه دستگاه را نشان می دهد.

ضریب همبستگی ارتفاع موج شاخص در دستگاههای AW1 ، AW2 و AW3 به ترتیب برابر با ۰/۸ ، ۰/۹۲ و ۰/۷۴ بدست آمده

جدول ۲- خلاصه تحلیل آماری مشخصات موج در طول دوره زمانی شبیه سازی میانگین جهت موج (درجه) پريود حداکثر (ثانيه) ارتفاع موج شاخص (متر) دستگاه يراكندگى انحراف میانگین پراکندگی انحراف میانگین پراکندگی انحراف میانگین ٠/١٩ 78/08 177/4 ./4٣ -٣/۴۴ ٧/۴۲ - • / • ۴۳ ٠/٣١ 1/57 AW1 •/17 1/+9 189/8 ./4٣ -7/24 ٧/٧٢ ·/7V - • / **** 1/490 AW2 •/•٧ ۵/۲۱ 187/0 ./40 -٣/۴٣ V/24 ٠/٣٢ -•/• **** 1/887 AW3 ۱/۳۵۲ •/17 1.144 187/2 ./4٣ -٣/١٣ ٧/۵۶ ٠/٣٠ -•/• ۵١ میانگین

Downloaded from marine-eng.ir on 2025-06-27]

۵–۳- شبیه سازی توزیع ارتفاع مـوج شـاخص در خلـیج چابهار

نتایج حاصل از شبیهسازی ارتفاع موج شاخص بوسیله مدل SWAN در طول دوره وقوع توفان گنو از تاریخ ۴ تا ۷ ژوئن ۲۰۰۷ در خلیج چابهار در شکل ۷ نشان داده شده است. همانگونه که در شکل مشاهده می گردد ارتفاع موج شاخص در بیرون خلیج در روزهای چهارم و پنجم ژوئن به حداکثر یک متر و در داخل خلیج به حداکثر ۷۰ سانتیمتر میرسد. از روز پنجم ژوئن که توفان گنو به آبهای ساحلی ایران نزدیک میشود ارتفاع موج شاخص افزایش پیدا کرده و در بیرون خلیج به بیش ازچهار متر و در دهانه ورودی خلیج به سه متر در ساعات اولیه روز ششم ژوئن مىرسد. با نزديكتر شدن مركز توفان به سواحل ايران، ارتفاع موج شاخص افزایش پیدا کرده، بطوریکه در بیرون خلیج به بیش از شش متر و در ورودی خلیج به چهار متر در انتهای روز ششم ژوئن میرسد. از ابتدای روز هفتم با کاهش شدت توفان از ارتفاع موج شاخص کاسته شده و به بیش از پنج متر در بیرون خلیج و به سه متر در ورودی خلیج میرسد. در مقایسه با تحقیقات انجام شده قبلی در محدوده خلیج چابهار که بیشینه ارتفاع موج شاخص را در این منطقه ۳/۸ متر برآورد نمودهاند [۲۲و ۲۳] نتایج بدست آمده نشان میدهد که حداکثر ارتفاع موج شاخص ناشی از توفان

گنو در محدوده خلیج به ۵ متر رسیده است که با نتایج ثبت شده در حین توفان تطابق خوبی دارد. لذا در مقایسه با کارهای قبلی انجام شده مدلسازی حاضر از دقت بالاتری برخوردار است.

6-4- کالیبراسیون و صحت سنجی مدل GETM

مدلGETM همانند مدل SWAN برای یک دوره یک ماهه در حالت غیر ایستا و در مختصات کروی با گام زمانی ۱۵ ثانیه برای مدل بزرگ و برای ناحیه متوسط و کوچک به ترتیب با گامهای زمانی ۲/۵ و یک ثانیه اجرا گردید. اطلاعات ثبت شده بوسیله سه دستگاه TG واقع در داخل و بیرون خلیج چابهار به منظور کالیبراسیون و صحت سنجی نتایج حاصل از مدلسازی مورد استفاده قرار گرفته است (شکل ۲). پارامتر کالیبراسیون نمودن خطای ناشی از مدلسازی سطح آب در منطقه مورد مطالعه عدد ۱۰۰۱ متر انتخاب گردید. در شکلهای ۸ ، ۹ و ۱۰ نتایج شبت شده در هر سه دستگاه TG2، TG1 و ST3 نشان داده شده ماست. همانگونه که در این اشکال مشاهده می شود نتایج حاصل از مدلسازی سطح آب در منطقه مورد مطالعه

شکل ۸ – مقایسه بین سطح آب انداره گیری شده و شبیه سازی شده در دستگاه TG1

شکل ۹- مقایسه بین سطح آب انداره گیری شده و شبیه سازی شده در دستگاه TG2

شکل ۱۰- مقایسه بین سطح آب انداره گیری شده و شبیه سازی شده در دستگاه TG3

۵-۵- تعیین میزان مد ناشی از توفان

میزان تفاوت تراز سطح آب با جزر و مد نجومی نشان دهنده میزان تاثیر میدان باد بر تغییرات تراز سطح آب است. در این تحقیق جهت تعیین میزان نوسانات مد ناشی از توفاناز برنامه TASK2000 استفاده شده است.

با حذف مولفه های جزر و مدی از تراز سطح آب در محدوده خلیج چابهار توزیع تغییرات مد ناشی از توفان بدست آمد. نتایج حاصل نشان میدهد حداکثر مد ناشی از توفان در ساعت ۲۲:۳۰ روز ششم ژوئن اتفاق افتاده است. در شکل ۱۱ تغییرات مد ناشی از توفان در خلیج چابهار (ساعت ۲۲:۳۰ روز ششم ژوئن) نشان داده شده است. همانطوری که در شکل مشاهده می گردد تراز سطح آب از ۲۵ سانتیمتر در سمت شرقی داخل خلیج تا حداکثر ۵۰ سانتیمتر در سمت غربی خلیج و در حاشیه شهر کنارک که دارای کمترین تراز از سطح دریاست، افزایش یافته است. لازم به ذکر است که در روز ششم ژوئن حداکثر سرعت باد در این منطقه ۱۵

متر بر ثانیه و دارای جهت جنوب شرقی بوده است.با توجه به کمتر بودن تراز سطح در قسمت غربی نسبت به سایر نقاط خلیج و همچنین جهت وزش باد (جنوب شرقی)، حداکثر مد ناشی از توفان در سمت غربی داخل خلیج چابهار ایجاد شده است.

شکل ۱۱– تغییر تراز مد بیشینه ناشی از توفان گنو در خلیج چابهار

۵-۶- شبیه سازی تغییرات سطح آب در خلیج چابهار نتایج حاصل از شبیهسازی تغییرات تراز سطح آب بوسیله مدلGETM در طول دوره وقوع توفان گنو از تاریخ اول تا هفتم ژوئن ۲۰۰۷ در خلیج چابهار در شکل ۱۲ نشان داده شده است. همانگونه که در شکل ملاحظه می شود تراز سطح آب در روزهای چهارم و پنجم ژوئن به حداکثر ۱۲۰ سانتیمتر بالاتر از تراز متوسط دریا رسیده است. با نزدیک شدن توفان به سواحل ایران، تراز سطح آب افزایش یافته و به حداکثر ۱۵۰ سانتیمتر در روز ششم ژوئن میرسد. از روز ششم به بعد با کاهش شدت توفان از ارتفاع سطح آب کاسته شده و در روز هفتم ژوئن به حداکثر ۱۳۰ سانتیمتر می سد. همانگونه که در شکل ۱۲ مشاهده می شود روند تغییرات سطح آب در روز ششم ژوئن در داخل خلیج نشان می-دهد با توجه به کمتر بودن تراز سطح در قسمت غربی نسبت به سایر نقاط خلیج و همچنین تاثیر جهت وزش باد گنو (جنوب شرقی) بر روی الگوی جریان، تراز سطح آب از سمت شرق به غرب در داخل خلیج افزایش یافته است. بررسی منحنی تغییرات جزر و مدی سطح آب خلیج چابهار نشان میدهد بازه زمانی ۴ تا ۷ ژوئن در دوره کمینه جزر و مد بوده است. لذا با وجود آنکه حداکثر مد ناشی از توفان در ساعت ۲۲:۳۰ روز ششم ژوئن بوده است اما سطح آب در داخل خلیج در تراز حداکثری نبوده است. همانطوریکه در شکل ۱۲ مشاهده می شود در زمان وقوع توفان، نقاط کم عمق تر حاشیه خلیج از جمله شهر کنارک، تراز سطح آب بالاتر از سایر نقاط بوده است. بنابراین در زمان توفان گنو، شهر کنارک بیش از سایر نقاط در معرض خطر آبگرفتگی قرار داشته است. بنابراین این منطقه بایستی از لحاظ اقدامات پیشگیرانه ناشی از خطر آب گرفتگی به منظور جلوگیری از آسیبهای ناشی از وقوع توفانهای شدیدتر مورد توجه ویژه قرار گیرد.

۶- بحث و نتیجه گیری

در این تحقیق از مدل موج طیفی SWAN نسخه ۴۰/۸۵ به منظور شبیه سازی مشخصات امواج و مدل هیدرودینامیک GETM جهت مدلسازی مد ناشی از توفان گنو در سواحل چابهار استفاده گردید. مقایسه نتایج مدلسازی موج با داده های ثبت شده در هر سه ایستگاه نشان می دهد که ارتفاع موج شاخص شبیه سازی شده تطابق خوبی در هر سه ایستگاه داشته است. نتایج نشان می دهد که در ایستگاه شماره ۲ (AW2) حداکثر موج

شاخص حاصل از توفان گنو به ۵ متر در روز ششم ژوئن در بیرون از خلیج چابهار رسیده است. متوسط جهت موج در ایستگاههای ۲ و ۳ در طول دوره مدلسازی از تطابق خوبی با داده های ثبت شده برخوردار بوده است. اما در ایستگاه شماره ۱ بدلیل تاثیر انعکاس امواج بر روی داده های ثبت شده، نتایج حاصل از مدلسازی بالادست برآورد شده است. نتایج مدلسازی پریود شاخص موج در هر سه ایستگاه بجز در طول دوره وقوع توفان گنو پایین دست برآورد شده است. نتایج مدلسازی ارتفاع شاخص موج در خلیج چابهار نشان میدهد که در طول دوره وقوع توفان در بیرون خلیج چابهار حداکثر ارتفاع موج شاخص به بیش از شش متر و در داخل آن به حداکثر چهار متر رسیده است. نتایج حاصل از مدلسازی سطح آب توسط مدل هیدرودینامیک GETM در هر سه دستگاه از تطابق خوبی با داده های ثبت شده برخوردار است. بعلاوه نتایج حاصل، بیشترین مد ناشی از توفان در سواحل چابهار را در روزششم ژوئن و تقریبا برابر با ۵۰ سانتیمتر برآورد نموده است. از آنجایی که توفان گنو در روز ششم ژوئن و پس از ضعیف شدن و از دست دادن انرژی خود به نواحی ساحلی ایران رسید و از طرفی بدلیل همزمانی با سیکل جزر و مد حداقل، مد ناشی از آن چشمگیر نبوده است. لذا در در صورت وقوع توفانهای شدیدتر در آینده و همزمانی آنها با سیکل جزر و مد حداکثر، بدلیل شرایط جغرافيايي منطقه كنارك، وقوع توفانهاي محتمل ميتواند خسارتهای جبران ناپذیری از لحاظ اقتصادی و زیست محیطی به منطقه وارد نماید.

۷- تشکر و قدردانی

نویسندگان بر خود لازم می دانند که از سازمان بنادر و دریانوردی بخصوص اداره کل مهندسی سواحل و بنادر بخاطر در اختیار قرار دادن دادههای مورد نیاز این تحقیق کمال تشکر و قدردانی را داشته باشند.

۸ – کلید واژگان

- 1- White Capping
- 2- Nested
- 3- Swell waves
- 4- Neap Tide

Downloaded from marine-eng.ir on 2025-06-27

شکل ۱۲- تغییرات تراز سطح آب در طول دوره وقوع توفان گنو در خلیج چابهار

and The Arabian Sea (1877-1970), New Delhi, 110 003, India.

- 7- Bailey, R.W., (Ed.), (1988), *Records of Oman:* 1867-1947, 8 Vols. Archive Editions, Buckingham shire, England.
- 8- Haggag, M. and Badry, H., (2012), *HydrometeorologicalModeling Study of Tropical Cyclone Phet in the Arabian Sea in 2010*, Atmospheric and Climate Sciences, 2, P. 174-190.
- 9- WAMDI Group, (1988), The WAM model a third generation ocean wave prediction model, Journal of physical oceanography, 18(12),p. 1775-1810.
- 10- Tolman, H.L., (1989), The numerical model WAVEWATCH: a third generation model for the hindcasting of wind waves on tides in shelf seas, Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, ISSN 0169-6548, Rep. No. 89-2, 72 pp.
- 11- Benoit, M., Marcos, F., and Beck, F., (1996), Development of a third generation shallow-water wave model with unstructured spatial meshing, 25th International Conference of Coastal Engineering (Orlando, USA, ASCE), p. 551–574.
- 12-Booij, N., Ris, R.C. and Holthuijsen, L.H., (1999), A third-generation wave model for coastal

۹- مراجع و منابع

- 1- Emanuel, K., (2005), *Increasing destructiveness* of tropical cyclones over the past 30 years, nature, Vol. 436, P. 686-688.
- 2- Webster, P. J., G. J. Holland, J. A. Curry and H.-R. Chang, (2005), *Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment*, Science, Vol.309 (5742): P. 1844-1846.
- Neumann, C. J., (1993), *Global overview*, Chapter
 1, Global guide to tropical cyclone forecasting. WMO, Geneva.
- 4- Mcbride, J.L, (1995), *Tropical Cyclone Formation*, In: Elsberry RL Global Perspectives on tropical Cyclone, WMO Tech Doc WMO/TD-No 693, Report No TCP-38, WMO, Geneva, P 63-105.
- 5- Dibajnia, M., Soltanpour, M, Narin, R. andAllahyar, M, (2009), Cyclone Gonu: The Most Intense Tropical Cyclone on Record in the Arabian Sea Indian Ocean tropical Cyclone and Climate Change. Y. Charabi. Muscat, Oman, springer: P. 149-157.
- 6- Indian Meteorological Department, (1979), Tracks of storms and depressions in the Bay of Bengal

- 24-W.F. Baird & Associates Coastal Engineers Ltd, Oman Sea Tropical Cyclone Design Waves, (2007), 150p.
- 25- Fritz, H.M, Blount, C.D, Albusaidi, F.B, Al-Harthy, A.H.M, (2010), *Cyclone Gonu Storm Surge in Oman*, Estuarine, Coastal and Shelf Science 86, P. 102-106.
- 26- Dube, S., Jain, I.,Rao, AD.andMurty, TS., (2009), Storm Surge Modeling for the Bay of Bengal and Arabian Sea, Nat Hazards 51: P. 3-27.
- 27-Ali, A. (1979), Storm surges in the Bay of Bengal and some Related Problems, University of Reading, England. Ph.D. Thesis.
- 28- Rao, AD., (1982), Numerical Storm Surge Prediction in India, New Delhi, IIT Delhi. Ph.D. Thesis: 211.
- 29- Roy, G., (1984), *Numerical Storm Surge Prediction in Bangladesh*, Delhi, Indian Institue of Technology. Ph.D. thesis: 188.
- 30- Murty, T., (1984), *Storm Surges: Meteorological Ocean Tides, Ottawa, Canada*, Department of Fishers and Oceans, pp 897.
- 31- Murty, T., Flather, RA, Henry, RF., (1986), The Storm Surge problem in the Bay of Bengal, Progress in Oceanography (16): p. 195-233.
- 32- Das, PK., (1994), Prediction of storm Surge in the Bay of Bengal, Proc Indian NatlSciAcad (60): p. 513-533.
- 33- Das, PK., (1994), On the prediction of Storm Surges, Sadhana, 19(4): p. 583-595.
- 34- Gönnert, G., Dube, SK., Murty, T., Seifert, W., (2001), *Global storm surges: Theory, Observations and applications*, Die Kueste, 623 p.
- 35- Dube, S., Rao, AD., Sinha, PC., Murty, TS., Bahulayan, N., (1997), Storm surge in the Bay of Bengal and Arabian Sea: the Problem and its Prediction, Mausam, 48: p. 283-304.
- 36- Dube, S., Chittibabu, P., Rao, AD., Sinha, PC.andMurty, TS., (2000), *Extreme Sea Levels Associated with Severe Tropical Cyclones Hitting Orissa Coast of India*, Mar Geod 23: p. 75-90.
- 37- Chittibabu, P., (1999), Development of storm Surge Prediction models for the Bay of Bengal and the Arabian Sea, Delhi, IIT Delhi. Ph.D. Thesis: 262.
- 38- Johns, B. and Ali, A., (1980), The Numerical Modelling of Storm Surges in the Bay of Bengal, Q J R MeteorolSoc 106: p. 1-8.
- 39- Dube, S., Sinha, PC.,Roa, AD.andRoa, GS., (1985), *Numerical Modelling of Storm Surges in the Arabian Sea*, Appl Math Model (9): p. 289-294.
- 40- Dube, S., Sinha, PC.and Roy, GD., (1985), *The Numerical Simulation of Storm Surges along the BangladeshCoast*, Dyn Atoms Oceans 9: p. 121-133.

regions. 1. Model description and validation, Journal of Geophysical Research, 104, P. 7649-7666.

- 13- Booij, N., Holthuijsen, L.H. and Haagsma, I.J.G., (1998), *Comparing the second-generation HISWA wave model with the third-generation SWAN wave model*, Proceedings of 5th International Workshop on Wave Hindcasting and Forecasting, Melbourne, FL.
- 14- Chen Xi, Min, J., Li, Y., (2003), The simulation of typhoon waves around TaiwanIsland,ScientiaMeteorologicaSinica, 23(1),p. 46-54.
- 15- Holthuijsen, L.H.,Booij, N.,Ris, R.C.,Andorka Gal, J.H. and de Jong, J.C.M., (1997), *A verification of the third-generation wave model SWAN along the southern north sea coast*, Proceedings 3rd International Symposium on Ocean Wave Measurement and Analysis, WAVES'97. ASCE, p. 49-63.
- 16- Hu, K., Ding, P., and Zhu, S., (2004), Numerical simulation of typhoon waves around the waters of the Changjiang Estuary: A case study of Typhoon Rusa and Typhoon Sinlaku, ActaOceanologicaSinica, 26(5), p. 23-33.
- 17- Lin, W.; Sanford, L.P., and Suttles, S.E., (2002), *Wave measurement and modelling in Chesapeake Bay*, Continental Shelf Research, 22, p. 2673-2686.
- 18- Ou, S., Liau, J., and Hsu, T. and Tzang, S., (2002), *Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan*, Ocean Engineering,29, p. 947-971.
- 19- Pan, Y.; Chen, X., and Sha, W., (2003), *Characteristics of typhoon waves in Zhanjiang Bay*, Journal of PLA University of Science and Technology (Natural Science), 4(4): p. 82-88.
- 20-Rogers, W.E., Hwang, P.A. and Wang, D.W., (2003), Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications, J. Phys. Oceanogr., 33, p. 366– 389.
- 21-Rogers, W.E., Kaihatu, J.M., Petit, H.A.H., Booij, N., and Holthuijsen, L.H., (2002), Diffusion reduction in an arbitrary scale third generation wind wave model, Ocean Engineering 29(11), p. 1357-1390.
- 22- Golshani, A and Taebi, S., (2008), Numerical Modeling of Gonu Cyclone and Its ResultingWaves in the Gulf of Oman, Journalof Marin Engineering, Vol.8, p.25-34. (In Persian)
- 23-Khaniki, A., Meshkati, A. and Bidokhti, A., (2009), *Tropical cyclone Induced waves in the ChabaharBay area*, 11th MIC, Iran, KishIsland. (In Persian)

- 46- NCEP Climate Forecast System Reanalysis (CFSR), URL: http://dss.ucar.edu/datasets/ds093.0/
- 47- The US Joint Typhoon Warning Center (JTWC) 'Best Track' digital data set, URL: http://usno.navy.mil/NOOC/nmfcph/RSS/jtwc/best tracks/
- 48- The European Centre for Medium-Range Weather Forecasts (ECMWF), URL: http://dataportal.ecmwf.int/data/d/interim full daily/
- 49- Kumar, V.S., Singh, J., Pednekar, P. and Gowthaman, R., (2011), *Wave in the nearshore waters of northern Arabian Sea during the summer monsoon*, Ocean Engineering, 38(2-3): p. 382-388.
- 50- Hassannezhad, M., Soltanpour, M. and Haghighi, S., (2011), 2D Hydrodynamic Modeling and Measurements of Chabahar Bay, Journal of Coastal Reaserch, SI 64 (Proceedings of the 11th International Coastal Symposium), p.1043-1047.

- 41- Salehipour, A. and Afzali, K., (2007), Investigation of the Gonu tropical cyclone and the impacts on the OmanSea shorelines geomorphology, Minstry of industry and mine, 131p. (In Persian)
- 42- Taylor, O., (2009), The Impact of Cyclone Gonu on Selected Coral Rich Areas of the Gulf of Oman Including Indications of Recovery at the Daymanyiat Islands, 1st Int. Conf. on Indian Ocean Tropical Cyclones and Climatic Change, 8-11 March 2009, Muscat, Sultanate of Oman.
- 43- Delft University of Technology, (2010), SWAN User manual, version 40.81.
- 44- Burchard, H., Bolding, K., and Umlauf, L., (2012), *GETM-General Estuarine Transport Model,source code and test case. Documentation*, WWW page, http://www.getm.eu
- 45- Smith, W.H.F. and Sandwell, D.T., (1997), Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, P. 1956-1962.