Free Vibration Analysis of Functionally Graded Elliptical Plates

Sh. Hosseini Hashemi¹, S.R. Atashipour², M. Karimi³, M. Es'haghi⁴

1- Professor, School of Mechanical Eng., Iran University of Science and Technology
2- PhD Candidate, School of Mechanical Eng., Iran Univ. of Science and Technology
3- MSc in Mechanical Eng., MAPNA Turbine Eng. and Manufacturing Co. (TUGA)
4- PhD student, Department of Mechanical Engineering, Concordia University

Abstract

This paper deals with a free vibration analysis of functionally graded elliptical plates with different classical boundary conditions on the basis of polynomial-Ritz method and classical plate theory. The proposed admissible function is capable to obtain accurate natural frequencies of different classical boundary conditions namely, clamped, free and simply supported edges. The mechanical properties of the FG plate are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents. The convergence of applied polynomial-Ritz method is investigated. In order to verify the accuracy of the present solution, a comprehensive comparison study is performed.

¹atashipour@iust.ac.ir

published in July 5th 2019
ارتباطات ورقی و صفحه‌های تحریکی با اکتیویت قطعی و طراحی ورق‌های فلزی در استحکام‌هایی که به‌طور معمول برای ساختمان‌ها و مراکز استفاده می‌شوند. این روش‌ها برای ساختمان‌های خاص به عنوان مثال ساختمان‌های برجی بخصوص در شهرهایی که به‌طور مداوم در دمای بالا و نیز رطوبت بالا قرار گرفته‌اند استفاده می‌شوند.

1- مقدمه

مواد هندسی FGM نسل جدیدی از مواد مركبی که توسط شیمیایان زبانی در سال 1984 معرفی شده‌اند. خواص مواد FGM به‌طور پیوسته از کی سلول تا سطح دیگر تغییر می‌کند. این خصوصیت به میزان که مشکل اپیکوستیک می‌نشیند در مواد فلزی ناهمگنی برجسته شود. یکی از اولین اپیکوستیکی مواد مقاومت بالای آنها در مقابل دماهای بهار زیاد است که موجب کاهش قدرت آنها از روند مگنتیسم می‌گردد. مواد FGM برای ساختمان‌های میان‌رده و مراکز می‌تواند خواص بهتری را داشته باشد با توجه به حیزگیری‌های معنی‌داری که منجر به بروز فرآیند FGM می‌شود. در سال‌های اخیر استفاده از ورق‌های FGM برای ساختمان‌های مدیتاری در سیستم‌های تهویه مطبوع (HVAC) نشانه‌ای است. چنین ساختمان‌هایی توسط دستگاه‌های فنی‌ای که می‌توانند به بهبود صداپیشگی پرداخته و محدود کننده‌ای استفاده می‌شوند.

نکته‌ای از اولین اپیکوستیکی مواد FGM برای ساختمان‌های برج و ساختمان‌هایی که در دمای بالا و رطوبت بالا قرار گرفته‌اند استفاده می‌شوند.

در سال‌های اخیر، محققین به توجه به ساختمان‌های برجی که به‌طور مداوم در دمای بالا و نیز رطوبت بالا قرار گرفته‌اند که این مواد FGM را برای ساختمان‌های مدیتاری در سیستم‌های تهویه مطبوع (HVAC) نشانده‌اند. این ساختمان‌هایی توسط دستگاه‌های فنی‌ای که می‌توانند به بهبود صداپیشگی پرداخته و محدود کننده‌ای استفاده می‌شوند.

nym شماره 15/16 و تابستان 91

44
تحلیل ارتباطات آزاد و رفاهی پیشی گیری موجوده از مواد

\begin{align}
V_m + V_e &= 1 \\
V_e &= \left(\frac{z}{h} + \frac{1}{2} \right)^3, \quad g \geq 0
\end{align}

در رابطه بالا c و m اسیمپتیک اشاره می‌نماید. رابطه بالا یک قاعده ساده می‌آید که با استفاده از آن می‌توان خواص ورقی که دارای اجزای سرامیکی و فلزی باشد را بدست آورد. همگامی 0 آنگاه خواص ورقی از جنس سرامیک خواهیم داشت و با افزایش شاخص گردایان، خواص فلزی افزایش می‌یابد. در حالتی که شاخص گردایان برای واحد این شرایط مواد به صورت خطی در راستای ضخامت ورق تغییر می‌نماید.

سی‌گ و تیب ۱۱۲ برای بررسی ارتباطات عرضی ورق گیبردار پیشی گیری اشراط نمود. وی در تحلیل خود فرض نمود که چنین شاخص باید ارتباطات متقابل محوری در ورقه‌ای دارای باشد. پس از آن چندین جلسه بررسی ارتباطات آزاد ورقه‌ای پیشی گیری با شرط مساوی آزاد صوتی دی نیفت. به عنوان مثال بر این آزاد پیشی گیری با سنت امکاناتی که اخیراً بر روی ورقه‌ای پیشی گیری انجام شد. به می‌توان مثلاً این سیستم و نتایج با استفاده از روش ورقه‌ای اجرای نمود.

آگره مطالعه جدید در زمینه ارتباطات آزاد ورق-های پیشی گیری در منابع پانزده می‌شود، که هرکدام به بررسی ارتباطات ورقه‌ای پیشی گیری شده است. این مواد FGM برگردانش شده است. این حداکثر روی FGM پیشی گیری مورد مطالعه قرار گرفته است و فکرکاری به دلیل محدودی کوچک تغییرات نسبت یافته و تاثیر ناچیز تغییرات بر پاسخ مساله، اغلب مطالعات انجام شده است. تحلیل مستری ورقه‌ای FGM شده در راستای این شاخص است. این اشکال تغییرات در نظر گرفته‌اند (به عنوان مثال ۱۶-۱۳۲۰-۲۱ را بپندید). بر این اساس، پایام‌های ورقه‌ای FGM به صورت زیر تعیین می‌شوند:

\begin{align}
E(z) &= (E_c - E_m)\nu(z) + E_m \\
\rho(z) &= (\rho_c - \rho_m)\nu(z) + \rho_m \\
V(z) &= V
\end{align}

مواد FGM ۳- مواد FGM اموزه‌های FGM دارای قرارنگام در اینجا را به سادگی می‌توان کنترل نمود. از این رو می‌توان با طراحی مناسب بیوترینگالی تغییرات خورا برای حصول عملکرد مناسب سازه جهت ساخت آن معرفی نمود. تأکید مدل‌های مختلفی برای پیش به نحو پیشی گیری تغییر خواص FGM مواد است. یکی از مهم‌ترین مدل‌های معرفی شده توسط محققان مدل ساده توانی می‌باشد. چنانچه ماده FGM از ترکیب سرامیکی و فلز ساخته شده باشد.
دوغانه است که برای بدست آوردن فرکانس‌های اساسی ورق لازم می‌باشد. اگرچه این تابع جوانه‌ای دقیقی را برای فرکانس‌های اول ورق نشان می‌دهد اما نتوانست اخراج فرکانس‌های دقیق در موهدهای ارتقاء بلاتر را دارا نماید. بنابراین نیاز است که از یک تابع پذیرفتنی مناسب‌تر استفاده گردد. به نحوی که بتوان با بهره‌گیری از آن فرکانس‌های دقیقی را برای موهدهای مختلف ورق ارتفاعی مختلف فرکانس FG بدست آورد و علاوه بر آن برای شرایط مرزی مختلف قابل استفاده باشد.

یک تابع آزمایشی مناسب که هم ویژگی‌های ذکر شده را دارا باشد، به صورت زیر است

$$W = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)^k \sum_{i=0}^{N} \sum_{j=0}^{N} \alpha_i x^i y^j$$ (6)

در رابطه بالا α_i ضریب مجهول می‌باشد و نسبت تابع این است که برای رضایت شرایط مرزی مختلف بکار گرفته می‌شود و به صورت زیر تعريف می‌گردد

$$W = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)^k \sum_{i=0}^{N} \sum_{j=0}^{N} \alpha_i x^i y^j$$ (7)

$$V = \frac{1}{2} \int_{-a}^{a} \int_{-b}^{b} \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy} \right) dx dy dz$$ (8)

و به منظور حل ریزت لازم است که افزایشی و پتانسیل ورق محاسبه شود. در این پتانسیل کرنشی برای یک ورق تاریک بیضوی به صورت زیر تعريف می‌گردد

$$V = \int_{-a}^{a} \int_{-b}^{b} \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy} \right) dx dy dz$$ (9)

در رابطه بالا ε_x, ε_y و γ_{xy} ضرایب مجهولی کرنش هستند که از جایگزینی ضرایب مجهولی میدان تغییر مکان در روابط ورق-تغییر مکان دارای صورت زیر بدست می‌آیند

$$\varepsilon_x = -\frac{\partial \gamma_{xx}}{\partial x}, \quad \varepsilon_y = -\frac{\partial \gamma_{yy}}{\partial y}, \quad \gamma_{xy} = -\frac{\partial ^2 \gamma_{xy}}{\partial x \partial y}$$ (10)

به منظور حل ریزت لازم است که افزایشی و پتانسیل ورق محاسبه شود. در این پتانسیل کرنشی برای یک ورق تاریک بیضوی به صورت زیر تعريف می‌گردد

$$W = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)^k \sum_{i=0}^{N} \sum_{j=0}^{N} \alpha_i x^i y^j$$ (5)

در رابطه بالا α_1 و α_2 ضرایب مجهولی می‌باشند. لیست ۱۰۱ از این تابع شکل برای بدست اوردن فرکانس‌های یک ورق بیضوی با شرایط مرزی ساده استفاده نموده و برای پیش‌بینی از نسبت ضخامت و ضرایب پوئسون مختلف جایگزینی می‌کنند. این تابع تغییر شکل دارای توانایی تغییر تقارن
می‌توان نشان داد که مقدار بیشینه انرژی پتانسیل چنین خواهد بود:

\[
V_{Max} = \iint_{V} \frac{\varepsilon^2 E(z)}{2(1-\nu^2)} \left(\frac{\partial W}{\partial x} \right)^2 + \left(\frac{\partial W}{\partial y} \right)^2 \, dV
\]

(15)

\[
+ 2\nu \left(\frac{\partial W}{\partial x} \right)^2 + 2(1-\nu) \left(\frac{\partial W}{\partial y} \right)^2 \, dV
\]

رابطه بالا برای ورق‌های FG براساس مدل پراوین‌ردي به شکل زیر ساده می‌شود:

\[
V_{Max} = \frac{h^3}{4(1-\nu^2)} \left(g^2 + g + 2(E_z - E_w) \right)
\]

(16)

\[
+ \frac{1}{3} E_w \left(\frac{\partial W}{\partial x} \right)^2 + \left(\frac{\partial W}{\partial y} \right)^2 \, dA
\]

به منظور یکپارگیری روش رنگی، به تابع لایه‌ای بیشینه انرژی مکانیکی ورق کمینه شود. بنابراین، مقدار بیشینه انرژی جنبشی به صورت زیر تعیین می‌شود:

\[
\Pi = V_{Max} - T_{Max}
\]

(17)

به منظور دستیابی به حل رنگی، به دست داشته‌اند آن دسته از توابع پذیرفته بیشترین دیده‌بینی که به ارزیابی آن‌ها انرژی مکانیکی ورق کمینه شود. بنیان

\[
\delta \Pi = \Pi(u + \delta u, v + \delta v, w + \delta w) - \Pi(u, v, w) = 0
\]

(18)

همانطور که قبلاً ذکر شد، تابع آزمایشی را به صورت رابطه (6) در نظر می‌گیریم. در این رابطه تنها ضرایب مجهول می‌باشد. جنبه‌های محاسبه‌بندی و تابع آزمایشی باشد. آن‌ها از رابطه بالا خواهیم داشت:

\[
\partial \Pi = \frac{\partial \Pi}{\partial \alpha_0} \delta \alpha_0 + \frac{\partial \Pi}{\partial \alpha_{01}} \delta \alpha_{01} + \frac{\partial \Pi}{\partial \alpha_{0}^2} \delta \alpha_{0}^2 + \ldots + \frac{\partial \Pi}{\partial \alpha_{N,N}} \delta \alpha_{N,N} = 0
\]

(19)

\[
\begin{align*}
\sigma_x &= \frac{E(z)}{1-\nu^2} (\varepsilon_x + \nu \varepsilon_y) \\
\sigma_y &= \frac{E(z)}{1-\nu^2} (\varepsilon_y + \nu \varepsilon_x) \\
\tau_{xy} &= \frac{E(z)}{2(1-\nu)} \gamma_{xy}
\end{align*}
\]

(10)

\[
\begin{align*}
\Pi &= V_{Max} - T_{Max} \\
T_{Max} &= \frac{\alpha^2}{2} \iint_{V} \rho (z) W^2 \, dV
\end{align*}
\]

(13)

از جابجایی روابط (21) و (3) در رابطه بالا و ساده‌سازی بر FG به مقدار بیشینه انرژی جنبشی در ورق‌های اساس مدل پراوین‌ردي به شکل زیر می‌رسیم:

\[
T_{Max} = \frac{1}{2} h \alpha^2 \left(\rho_a + \frac{\rho_a - \rho_m}{g + 1} \right) \iint_{V} W^2 \, dA
\]

(14)

با جابجایی روابط (9) و (10) در رابطه (8) به سادگی
4- بحث و بررسی نتایج عددي

براساس تحرير کلامی ورق و با استفاده از روش ریزی تشریح شده در قسمت قبل، یک کد کامپیوتری در نرم‌افزار Mathematica توسعه داده شده است که با استفاده از آن میزان فکرانس‌های طبیعی و شکل‌موهای ورق پیش‌ریزی FGM را به شرایط مناسب مختلف بسته ظرفیت می‌زد. این بررسی نتایج عددي در نظر گرفته شده است.

جدول 1- خواص مکانیکی مواد FGM

<table>
<thead>
<tr>
<th></th>
<th>密度 ρ_m (kg/m3)</th>
<th>弹性模量 E_m (Gpa)</th>
<th>密度 ρ_i (kg/m3)</th>
<th>弹性模量 E_i (Gpa)</th>
<th>材料类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>2700</td>
<td>70</td>
<td>2700</td>
<td>380</td>
<td>FGM1</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>2700</td>
<td>20</td>
<td>2700</td>
<td>890</td>
<td>FGM2</td>
</tr>
<tr>
<td>Ni</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جریان ۲- برسی همگرایی فرکانس‌های طبیعی بر حسب FG

<table>
<thead>
<tr>
<th>ω₁</th>
<th>ω₂</th>
<th>ω₃</th>
<th>N₁/N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>3×3</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>3×3</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>3×3</td>
</tr>
<tr>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>3×3</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>3×3</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>3×3</td>
</tr>
</tbody>
</table>

FGM1 و FGM2

گوی و بی‌گوی: میزان معمایی نشان دهنده صحت روش پژوهشی است که با افزایش تعداد جملات چندجمله‌ای تابع پذیرفتنی، مقادیر عددی حاصل از حل غیر بدنی سمال به سمت اعتماد مشخصی همگرا شوند که همان فرکانس‌های طبیعی ورق هستند. بین منظور، در جدول ۲ همگرایی مذکور برای یک ورق بیضوی با شعاع کوچک ۱، شعاع بزرگ ۳ و ضخامت ۲/۰۰ متر اورده شده است. شخص گردان در این حالت برای با واحد در نظر گرفته شده است. مقادیر عددی این جدول به خوبی همگرایی جملات چندجمله‌ای را با افزایش تعداد جملات چندجمله‌ای (N₁) و N₂ نشان می‌دهد. ذکر این نکته حائز اهمیت است که نیاز افزایش زمان اجرای برنامه کامپیوتری برای تعیین زیاد و N₁ و N₂ دور از نظر داشته است.

اختصار AS و SS به ترتیب نشان دهنده مودهای متقارن- پادمتقارن، پادمتقارن- متقارن، متقارن- متقارن و پادمتقارن می‌باشند. تقارن‌های مذکور نسبت به محورهای کوچک و بزرگ بیضی می‌باشند.

شکل ۲- تغییرات مدول الاستیسیتی در راستای ضخامت (الف) ورق ۱ و FGM1، (ب) ورق ۲ FG.
در جدول ۴ نیز مقایسه‌های مشاهده با جدول ۳ برای ورق FG با سرطان مزیگ گسیل‌های ساده انجام شده است. در FG بعد از جدول ۴، درصد اختلاف بین نتایج روش حاضر و سابی به محاسبه و ارائه شده است. این درصد اختلاف از رابطه زیر قابل محاسبه است:

\[
\% \text{Diff} = \left(\frac{\text{OMs} - \text{PMs}}{\text{OMs}} \right) \times 100
\]

OMs: سایر روش‌ها
PMs: روش حاضر

در این جدول، 1 و 2 به ترتیب نشان‌دهنده درصد خطای روش حاضر نسبت به حالت تحلیلی و حل مجدد محدود می‌باشد. همانگونه در جدول ۳ و ۴ مشخص است، همگامی سیستمی بین نتایج بدست آمده در پژوهش حاضر و نتایج مربوط به مطالعه جغرافیایی مهارابدی و همکاران [۲۲]، در صحت حل انجام شده، شده را تایید کرد.

به منظور حصول اطمینان از صحت حل صورت پذیرفته در جدول ۴ و یک بررسی مقایسه بین نتایج عدی مربوط به پژوهش حاضر و مطالعه تحلیلی جغرافیایی مهارابدی و همکاران [۲۳] برای ارتقاء از آزاد ورقه‌های نازک دابری FG انجام شده است. به‌دین منظور شما به کمک بررسی می‌باشد. از پیش به مدیریت و برای ۱۰ متر فروبده شده است. از پیش به ذکر است که مطالعه مرجع [۲۳] در مورد ارتقاء ارتفاع دابری مقدار n مشخص کننده تعادل گردهای قطعی در شکل مورد ارتقاء دیگر مربوط به می‌باشد.

جدول ۳: مقایسه فراکسیون‌های ورق دابری FG بر حسب حرارت (Hz) با شرایط مزیگ یک گرداار

<table>
<thead>
<tr>
<th>%Diff 2</th>
<th>%Diff 1</th>
<th>FEM [٪]</th>
<th>مرجع [٪]</th>
<th>Present</th>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۹۷۶</td>
<td>۱۳۹/۵۹</td>
<td>۱۳۸/۸۱</td>
<td>۱۳۸/۷۲</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۹۷۶</td>
<td>۱۳۹/۵۹</td>
<td>۱۳۸/۸۱</td>
<td>۱۳۸/۷۲</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۲۸۴/۸۰</td>
<td>۲۸۸/۰۵</td>
<td>۲۸۸/۰۵</td>
<td>۱</td>
<td></td>
</tr>
</tbody>
</table>

دانشگاه شهید بهشتی/ دبیری، ایران
جدول 4- مقایسه فرکانس‌های ورق دایروی بر حسب هرتز (Hz) FG با شرایط مزی تکیه‌گاه ساده

<table>
<thead>
<tr>
<th>%Diff 2</th>
<th>%Diff 1</th>
<th>FEM [Hz]</th>
<th>معبر</th>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00%</td>
<td>1.00%</td>
<td>64.32%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.77%</td>
<td>0.33%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.53%</td>
<td>0.26%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.27%</td>
<td>0.13%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.13%</td>
<td>0.06%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.06%</td>
<td>0.03%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.03%</td>
<td>0.01%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.00%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00%</td>
<td>0.00%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00%</td>
<td>0.00%</td>
<td>64.00%</td>
<td>88.68</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

این جدول، نیترکی‌یه گاه ساده می‌باشد. لازم به ذکر است که شکل بی‌بند فرکانس‌های طبیعی که با رابطه (21) تعیین شده است. در توری کلاسیک ورق مستقل از ضخامت آن است. نتایج این جدول نیز همخوانی و سازگاری بسیار مناسب بین نتایج را تایید می‌نماید. همگونی که مشخص است با آفرشال نسبت قطرها ورق که از فرکانس‌های طبیعی ورق کاهش می‌یابد.

مسلمانه، هنگامیکه شاخص گردانی به سمت صفر می‌کند، ورق به صورت همگان در می‌آید. در جدول 4، فرکانس‌های طبیعی بی‌بند ورق همگان به‌پوشی با نسبتی متعلیه از نقطه کوچک به نقطه بزرگ، با مقادیر مشابه بدست آمده توسط سری‌پا (پیوسته و سپرگی) (22) مقایسه شده است. شرط مزی فرض شده برای ورق در

جدول 5- مقایسه فرکانس‌های طبیعی بی‌بند ورق بی‌بند ایزوتروپیک همگان

<table>
<thead>
<tr>
<th>a/b</th>
<th>v/υ</th>
<th>v/υ</th>
<th>v/υ</th>
<th>v/υ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
</tbody>
</table>

سامیه/ بهار و نابیکان 91

شکل ۲- نحوه تغییرات فرکانس‌های طبیعی بعد ورق بیضوی FG بر حسب نسبت قطرها

این امر به دلیل کاهش صتیبی ورق می‌باشد. چرا که با افزایش نسبت مذکور، ورق از شکل دایره به شکل میله‌ای تغییر می‌دهد و در مورد فرکانس‌های بیضوی FG نیز صادق است. در نتیجه این موضوع نمودار تغییرات سه فرکانس طبیعی اول ورق در شکل ۳ نشان داده شده a/b بر حسب نسبت FG است.

همانگونه که در این شکل مشخص است، هنگامی که نسبت شعاع‌ها برابر با واحد می‌باشد، بیشترین مقادیر اختلاف بین فرکانس‌های طبیعی وجود دارد. حال آن‌ها که با افزایش a/b نسبت مذکور کاهش می‌یابد. ضمن آنکه مقادیر فرکانس‌های ورق نیز کاهش یافته و مجانب بار به سمت مقادیر مشخصی می‌کنند.

در جدول ۶ نیز نتایج بدست آمده از کامپیوتری برای ورق FG با نتایجی که از نرم‌افزار آنفکاس بدست آمده مورد مقایسه قرار گرفته است. به طور کلی نتایج ورق گردانان مطابق با نتایج آنفکاس بوده و مختصری از این مقادیر در جدول ۷ در نرم‌افزار ABAQUS منظور بررسی نشان داده شده‌اند.

برای ورق FG به طور کلی این نتایج با نتایج هنگام یک دیگر مطابقت دارد و خود گردانان می‌توانند به عنوان سریعترین مدل سالاری برای این نوع تنش‌های سه بعدی (3D stress) استفاده شوند. به فرکانس‌های مهرگان در صورتی این ورق نیز مشخص شده است. همچنین،
جدول ۶ - مقایسه سه فرکانس طبیعی اول بر روی پیچ FGM2 با شرایط مرزی مختلف

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>تکیه‌گاه ساده</th>
<th>تکیه‌گاه ساده</th>
<th>تکیه‌گاه ساده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوی روش</td>
<td>تحلیل رنزن</td>
<td>تحلیل رنزن</td>
<td>تحلیل رنزن</td>
</tr>
<tr>
<td>λ_1^2</td>
<td>9/3244.84</td>
<td>5/3244.84</td>
<td>3/2144.84</td>
</tr>
<tr>
<td>λ_2^2</td>
<td>6/9450.79</td>
<td>7/9550.79</td>
<td>12/9550.79</td>
</tr>
<tr>
<td>λ_3^2</td>
<td>8/9550.79</td>
<td>9/9550.79</td>
<td>10/9550.79</td>
</tr>
</tbody>
</table>

جدول ۷ - تاثیر شاخص گرادیان (g) بر فرکانس‌های برای شرایط مرزی مختلف FGM با پیچ FGM

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>تکیه‌گاه ساده</th>
<th>تکیه‌گاه ساده</th>
<th>تکیه‌گاه ساده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوی روش</td>
<td>تحلیل رنزن</td>
<td>تحلیل رنزن</td>
<td>تحلیل رنزن</td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>λ_1^2</td>
<td>6/9444.84</td>
<td>6/9444.84</td>
<td>6/9444.84</td>
</tr>
<tr>
<td>λ_2^2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>λ_3^2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

میل کردن شاخص گرادیان به سمت به‌نهایت، خصوصیات مکانیکی ورق FG به سمت یک ماده همگن می‌کند.

در جدول ۶، یک فرکانس برای اول ورق پیچ FGM1 با نسبت شعاع برکش شعاع کوچک ۲ و نسبت ضخامت شعاع کوچک ۵/۲ و اساس دو ABAQUS روش رنزن و الگوی دو منطقه از افزایش دیده شده است. این نتایج باید برای شرایط مرزی مختلف و با فرض شاخص گرادیان واحده محاسبه شده‌اند. همچنین مناسب بین مقادیر عددهای طبیعی ورق FGM1 صحبت روش حل تحلیل حاضر را برای ماده تابید می‌کند.

همانطور که در این جدول دیده می‌شود، به ازای همه مقادیر شاخص گرادیان و شرایط مرزی مختلف، با افزایش g فرکانس‌های طبیعی افزایش می‌یابند. این امر به دلیل آن است که در موهای بالاتر سفید بیشتری را از چربی نشان می‌دهد. این دیگری که از این دو جدول استنتاج می‌شود که فرکانس‌های طبیعی ورق به ازای افزایش شاخص گرادیان می‌باید. زیرا همان‌گونه که در شکل ۲ دیده می‌شود، با افزایش شاخص گرادیان، مقدار متوسط سطح ورق کاهش می‌یابد.

پایه. نرخ کاهش فرکانس‌ها با افزایش شاخص گرادیان کاهش می‌یابد، به بیانی که مشاهده می‌شود که پس از آن که شاخص گرادیان از ۷ بیشتر می‌گردد، نهایتاً قابل توجهی در مقادیر فرکانس‌های طبیعی ورق مشاهده می‌شود، چرا که بر اساس روابط (۲۳) و (۲۴) با
تعداده همدانی دریای ایران

جدول 8- مقایسه نیاز فرکانسی طبیعی اولی به آزاد وریق بین پوشش FGMI با شرایط مرزی مختلف

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>λ₁²</th>
<th>λ₂²</th>
<th>λ₃²</th>
<th>λ₄²</th>
<th>λ₅²</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحلیل ریزی تکه‌گاه ساده</td>
<td>746800</td>
<td>523967</td>
<td>733287</td>
<td>423987</td>
<td>563721</td>
</tr>
<tr>
<td>شرایط مرزی ساده</td>
<td>746800</td>
<td>523967</td>
<td>733287</td>
<td>423987</td>
<td>563721</td>
</tr>
<tr>
<td>تحلیل ریزی تکه‌گاه ساده</td>
<td>613324</td>
<td>412983</td>
<td>532441</td>
<td>765344</td>
<td>536544</td>
</tr>
<tr>
<td>شرایط مرزی ساده</td>
<td>613324</td>
<td>412983</td>
<td>532441</td>
<td>765344</td>
<td>536544</td>
</tr>
<tr>
<td>تحلیل ریزی تکه‌گاه ساده</td>
<td>234567</td>
<td>345678</td>
<td>456789</td>
<td>567890</td>
<td>678901</td>
</tr>
<tr>
<td>شرایط مرزی ساده</td>
<td>234567</td>
<td>345678</td>
<td>456789</td>
<td>567890</td>
<td>678901</td>
</tr>
</tbody>
</table>

در پایان، به منظور آن که درک بهتر و تصویر روشنی را نسبت به نحوه ارتعاش وریق‌های بیضوی و همچنین مودهای فرکانسی مختلف- مقترن- پایان‌ن، پایان‌ن، پایان‌ن، پایان‌ن، پایان‌ن، پایان‌ن، پایان‌ن، در مورد شرایط مرزی FGMGI و مودهای وریق بیضوی تهیه شده است. به‌درجه منظور، برداشتهای ویژه مناظر با هر فرکانسی طبیعی محاسبه شده است. این کار با استفاده از یک کامپیوتری که در نرم‌افزار MATHEMATICA توسعه داده‌شده است، انجام شده است.

شکل مودهای مربوط به وریق FGGA با لبه آزاد که دارای شعاع کوچک، شعاع بزرگ و ضخامت 0.1 و 0.2/ مرتبه پانزده، در شکل 4 نشان داده شده است. در تمامی این موارد شاخص گردانی برای با یک می- ماند، در اینجا چهار که مقدار فرکانسی طبیعی مناظر با هر شکل مربوط به حرکت FGGA در زیر آن اورده شده است. همچنین، به منظور بررسی تأثیر شرایط مرزی بر رفتار ارتعاشی وریق‌های بیضوی، تعادلی شکل مود مناظر با شرایط مرزی تکه‌گاه ساده و لبه گردباز، بر ترتیب، در شکل‌های 5 و 6 ارائه شده است.

نیچه‌گیری

در مقاله حاضر، یک تحلیل ارتعاشات آزاد بر اساس نشانه کلاسیک وریق و روش چند جمله‌ای- ریزی برای وریق‌های بیضوی FGGA با شرایط مرزی مختلف لیلاهی گیردای، آزاد و تکه‌گاه ساده ارائه شد و مقادیر منتوی از فرکانسی‌های طبیعی با دقت بالا محاسبه و ارائه شد.
تجزیه و تحلیل ارتعاشات آزاد و رترشی پیوسته شده از مواد FGM

شکل 4-الف: شکل مودهای متقاون - متقاون و بادمتقاون - بادمتقاون یک ورق پیوستی FGM با له اراد
شکل 4-ب- شکل موجه متقارن- پایداری و پادمختار- متقارن یک ورق بیضوی FGM با له آزاد
Simply support (AA) Simply support (SS)

(a) 63.7805 (a) 14.2736

(b) 93.2251 (b) 29.9934

(c) 137.711 (c) 54.9838

(d) 219.213 (d) 109.007

شکل 5- شکل مودهای متقارن- متقارن و بادممتقارن- بادممتقارن یک ورق بیضوی FGM با به تکیه گاهی ساده
Clamped (SA) and Clamped (AS)

(a) 79.1078
(b) 106.618
(c) 144.283
(d) 214.297

Clamped (AS)

(a) 37.7329
(b) 59.5385
(c) 91.2537
(d) 148.664

Figure 6 - Shape models of clamped-clamped and clamped-free compared with FGM sandwich.