تحلیل ارتعاشات آزاد ورق‌های بیضوی ساخته شده از مواد FGM

شاهرخ حسینی هاشمی۱، سید رسول آتشی پور۲، محمود کرمی۳، مهدی اسحاقی۴

۱- استاد دانشگاه مهندسی مکانیک، دانشگاه علم و صنعت ایران
۲- دانشجوی دکتری، دانشگاه مهندسی مکانیک، دانشگاه علم و صنعت ایران
۳- کارشناس ارشد، شرکت مهندسی و ساخت توربین‌های هیدرولیک
۴- دانشجوی دکتری، دانشگاه مهندسی مکانیک، دانشگاه کنکوردیا

چکیده
در این مقاله، یک تحلیل ارتعاشات آزاد برای ورق‌های بیضوی ساخته شده از مواد FGM با شرایط مرزی مختلف بر پایه روش جدید جمله‌ای- ریتز و نتوئی کلاسیک ورق آنالیز شده است. تحلیل بی‌سری سنتی پیش‌نهاد شده علاوه بر دقت بالا برای فرمول‌های طبیعی به‌دست آمده دریایی که رای مربوط می‌شود قدرت، لازم و کمک به گاه ساختمان‌های فرق‌گرمایی قرار گرفته است و حتماً برای آن‌ها یک انجام دهنده‌ای جامع با نتایج حاصل از مطالعات موجود در متاب‌برای ورق بیضوی همگی مطرح می‌گردد. ضمن نکته مثبت، نتایج حاصل از تحلیل حرارتی به‌وسیله ریتز در داده‌های مورد نظر این روش به‌صورت محاسبه می‌شود. تکنیک بررسی فرمول‌های FGM و ورق‌های بیضوی در راه حل مشکل، در پایان این مقاله و برای رتامات نیروی خواص فرمول‌های طبیعی از همگی مواد مورد مطالعه قرار گرفته است و شامل بودن، ممکن‌ترین، متقارن، پدردیده، پایدار، متقارن و پایدار می‌باشد. در نهایت، سهمیه‌ای برای مقدار FGM، فرمول‌های طبیعی، روش چند جمله‌ای- ریتز

کلمات کلیدی: ورق بیضوی، مواد FGM، فرمول‌های طبیعی، روش چند جمله‌ای- ریتز

Free Vibration Analysis of Functionally Graded Elliptical Plates

Sh. Hosseini Hashemi¹, S.R. Atashipour², M. Karimi³, M. Es’haghi⁴

1- Professor, School of Mechanical Eng., Iran University of Science and Technology
2- PhD Candidate, School of Mechanical Eng., Iran Univ. of Science and Technology
3- MSc in Mechanical Eng., MAPNA Turbine Eng. and Manufacturing Co. (TUGA)
4- PhD student, Department of Mechanical Engineering, Concordia University

Abstract

This paper deals with a free vibration analysis of functionally graded elliptical plates with different classical boundary conditions on the basis of polynomial-Ritz method and classical plate theory. The proposed admissible function is capable to obtain accurate natural frequencies of various classical boundary conditions namely, clamped, free and simply supported edges. The mechanical properties of the FG plate are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents. The convergence of applied polynomial-Ritz method is investigated. In order to verify the accuracy of the present solution, a comprehensive comparison study is performed.
with the available results in the literature for homogeneous elliptical plate and FG circular plate. Also, the numerical results of the present solution for FG elliptical plate are compared with those of the finite element method (FEM). Finally, the effects of the plate geometry and inhomogeneity on the natural frequencies are investigated and some vibrational mode shapes related to symmetric\-symmetric, symmetric-antisymmetric, antisymmetric-symmetric and antisymmetric-antisymmetric states are presented.

Keywords: Elliptical plate, Functionally Graded Materials, Natural Frequency, polynomial-Ritz method
(1) \(V_m + V_e = 1 \)

(2) \(V_e = \left(\frac{z}{h} + \frac{1}{2} \right)^g, \quad g \geq 0 \)

که در آن \(z \) مختصه راستای ضخامت ورق بوده و \(g \) مشخصه انرژی همچنین.

(3) \(E(z) = (E_e - E_m) V_e(z) + E_m \)

\(\rho(z) = (\rho_e - \rho_m) V_e(z) + \rho_m \)

\(V(z) = V \)

در رابطه بالا، \(E \) و \(m \) به ترتیب به خواص فلز و سرامیک اشاره می‌نماید. رابطه بالا یک قاعده ساده می‌باشد که با استفاده از آن می‌توان خواص ورقی که دارای اجزای سرامیکی و فلزی است را بدست آورد. \(h \) نهایی‌کاریکاتور از انرژی همگنی مشخصه سرامیکی و خواص فلزی افزایش می‌یابد. در حالتی که شامل کناره‌هایی باشد آنها به صورت خطی در راستای ضخامت ورق تغییر می‌نماید.

Siğn ve Tiyakı' \(\{12\} \) برای بررسی ارتعاشات عرضی ورق گیردار بپیوست اشکال نمود. وی در تحلیل خود فرض نمود که ججایی‌ها مشابه با ارتعاشات متقن‌وارن محوری در ورق‌های دابیری باشند. پس از آن چندین کار در زمینه بررسی ارتعاشات آزاد ورق‌های بپیوست با شرایط مرتز آزاد صورت پذیرفته. به عنوان مثال بررسی \(\{13\} \) با بکارگیری روش ریزت توانست فرکانس‌های ورق آزاد بپیوست را بدست آورد. از جمله مطالعاتی که اخیراً بر روی ورق‌های بپیوست انجام شده است می‌توان به کار سربیاسی و انتظار \(\{14\} \) برای بررسی ارتعاشات این سازه‌ها با ضخامت تاکتیک متفاوت با استفاده از روش ریزت اشاره نمود.

اگرچه مطالعات محتمدی در زمینه ارتعاشات آزاد ورق‌های بپیوست همکار در منابع مختلف می‌شود، اما کمتر به بررسی ارتعاشات ورق‌های بپیوست انجام شده است.

FGM

(4) \(E(z) = (E_e - E_m) V_e(z) + E_m \)

\(\rho(z) = (\rho_e - \rho_m) V_e(z) + \rho_m \)

\(V(z) = V \)

(5) \(V_m + V_e = 1 \)

(6) \(V_e = \left(\frac{z}{h} + \frac{1}{2} \right)^g, \quad g \geq 0 \)

FGM
دوگاهه است که براي بدست آوردن فركانس هاي اساسي ورق لازم مي‌باشد. اگرچه اين تابع جوانعلي دقیقی را برای فركانس اول ورق نتیجه مي‌دهد اما توانایي استخراج فركانس‌های دقیق در مودهای ارتعمالي بالاتر را دارا نمی‌باشد. بنابراین نياز است که از يک تابع پذيرفتني مناسب‌تر استفاده كرد. به نحوي كه بتوان با بهره‌گيری از آن فركانس‌های دقیق را برای مودهای ارتعمالي مختلف ورق FGM بدست آورد و علاوه بر آن، براي شرایط مرزی مختلف قابل استفاده كند. يک تابع ارتباطی مناسب كه همه ويرگي‌هاي ذكر شده را دارا باشد، به صورت زير است

\[W = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)^k \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha_i x^i y^j \]
(6)

در رابطه بالا \(\alpha_i \) ضریب مجهول می‌باشد و \(k \) ضریب تابع است که برای ارضاي شرایط مرزی مختلف پرداختگری می‌شود و به صورت زیر تعريف مي‌گردد:

\[\text{شرط مرزي ليه ازاد: } k = 0 \]
\[\text{شرط مرزي تكيك هييگه ساده: } k = 1 \]
\[\text{شرط مرزي ليه گيردار: } k = 2 \]
(7)

به منظور حل رينتز لازم است كه از رياحيه چنيشی و پتانسیل ورق محاسبه شود. انرژي پتانسیل كرنشي برای يک ورق نازک بيضوي به صورت زير تعريف مي‌گردد:

\[V = \frac{1}{2} \int \int \int \left(\sigma_x e_x + \sigma_y e_y + \tau_{xy} \gamma_{xy} \right) dx dy dz \]
(8)

در رابطه بالا \(\gamma_{xy} \) و \(e_x \) و \(e_y \) مولفه‌های كرنش هستند که از جابجاي مولفه‌هاي ميدان تغيير مي‌كنند در روابط كرنش-تغيير مي‌كنن به صورت زير بدست مي‌آمد:

\[e_x = -\varphi \frac{\partial^2 w}{\partial x^2}, \quad e_y = -\varphi \frac{\partial^2 w}{\partial y^2} \]
\[\gamma_{xy} = -2\varphi \frac{\partial^2 w}{\partial x \partial y} \]
(9)

با توجه به تولید طرح ورق FGM مطلوب شکل زیر، ورق FGM بيضوي تازگي را در \(b \) نظر گرفت و به صورت کوچک \(a, \) شعاع گرEEK و ضخامت \(h \) مي‌باشد.

\[u(x, y, z, t) = -z \frac{\partial w}{\partial x} \]
\[v(x, y, z, t) = -z \frac{\partial w}{\partial y} \]
\[w(x, y, z, t) = w(x, y, t) \]
(10)

اولین قدم در حل رينتز یافتن یک تابع پذیرفتنی مناسب می‌باشد، به نحوی که موجب دستیابی به یک حل ساده و در عین حال دقیق شود. با در نظر گرفتن معادله ناپیوست لب، یک تابع ارتباطی برای تخمین جابجاي صفحه مياني ورق را مي‌توان به شکل زير در نظر گرفت:

\[W = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)^k \left(\alpha_x \frac{x^2}{a^2} + \alpha_y \frac{y^2}{b^2} + \alpha_z \right) \]
(11)

در رابطه بالا \(\alpha_x \) و \(\alpha_y \) و \(\alpha_z \) ضریب مجهول می‌باشند. لبса 101 از اين تابع شكل برنده استوردن فركانس‌های یک ورق بيضوي با شرایط مزري ساده استفاده نمود و براي بهبود نسبت ضخامت‌ها و ضرايب پايان مختلف جواب‌های مناسبی را استخراج نمود. اين تابع تغيير شکل داري يک توانایي تشکيل تقرین
برای ناپایین رابطه موکله‌های نتش از روابط تنش-
کرنش هوک در حالت نتش صفحا به صورت زیر
استفاده می‌شود:

\[\sigma' = \frac{E(z)}{(1-\nu^2)}(\varepsilon_x + \nu \varepsilon_y) \]

\[\sigma_y' = \frac{E(z)}{(1-\nu^2)}(\varepsilon_y + \nu \varepsilon_x) \]

\[\tau_{xy} = \frac{E(z)}{2(1+\nu)} \gamma_{xy} \]

برای ورق‌های نازک نیز به صورت زیر

تعریف می‌شود:

\[T = \frac{1}{2} \int_{-w/2}^{w/2} \rho(z)(w')^2 dx dy dz \]

\[w(x, y, t) = W(x, y) \sin(\omega t) \]

\[T_{Max} = \frac{\omega^2}{2} \int_{-w/2}^{w/2} \rho(z) W^2 dz \]

\[T_{Max} = \frac{1}{2} h \omega^2 \left(\rho_n + \frac{\rho_n - \rho_m}{g + 1} \right) \int_{\Omega} W^2 dA \]

\[FGM \text{ تحلیل ارتعاشات آزاد ورق‌های یابی طیفی ساختمان شده از مواد} \]

\[\Pi = V_{Max} - T_{Max} \]

\[\delta \Pi = \Pi(u + \delta u, v + \delta v, w + \delta w) - \Pi(u, v, w) = 0 \]

\[h \omega^2 \left(\rho_n + \frac{\rho_n - \rho_m}{g + 1} \right) \int_{\Omega} W^2 dA \]

با چایگذاری روابط (9) و (10) در رابطه (8) به سادگی
حاصل از پژوهش حاضر، از خواص دو نوع ماده استفاده شده است که عبارتند از اومئیمونو- الومینا و فولاد- نیکل. برای سه‌پله‌ای این دو نوع ماده، به‌طور مشابه FGM2 و FGM1 با نشان می‌دهم. خواص مکانیکی مربوط به این ماده FG در جدول ۱ آرائه شده است.

به منظور نشان دادن نحوه تغییرات خواص مکانیکی ورق در راستای ضخامت، تغییرات مدل استیسیتی ماده FGM2 و FGM1 به‌طور ازای مقادیر مختلف شاخص گرداگیران ترسیمی و در شکل ۲ آرائه شده است.

در این پژوهش، برای ارزیابی نتایج عددهای کلی، فرکانس‌های ورق به صورت بدون بعد از آن درصد است که سختی خمیش ورق همگن با رابطه زیر تعیین می‌شود:

\[k^2 = \omega b^2 \sqrt{\rho_m h/D} \]

(

در رابطه مذکور \(D \) و \(\rho_m \) به‌ترتیب جکال فاز و سفتی (صلبیت) خمیش ورق همگن می‌باشد. لازم به ذکر است که سختی خمیش ورق حتماً با رابطه زیر تعیین می‌شود:

\[D = \frac{E_m h^3}{12(1 - V^2)} \]

همچنین، نسبت پواسون بجی موردی که مقدار آن در جدول مشخص شده است، در سایر موارد برابر با ۳/۳۰ در نظر گرفته شده است.

جدول ۱ - خواص مکانیکی مواد FG اومئیمنو- الومینا و فولاد- نیکل

<table>
<thead>
<tr>
<th>نوع ماده</th>
<th>(E_m (Gpa))</th>
<th>(\rho_m (kg/m^3))</th>
<th>(E_r (Gpa))</th>
<th>(\rho_r (kg/m^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>الومینا</td>
<td>(Al_2O_3)</td>
<td>۳۴۰</td>
<td>۳۸۰</td>
<td>۳۴۰</td>
</tr>
<tr>
<td>فولاد</td>
<td>(Si)</td>
<td>۲۶۰</td>
<td>۸۴۰</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>نیکل</td>
<td>(Ni)</td>
<td>۲۰۵</td>
<td>۹۰۰</td>
<td>۲۰۰</td>
</tr>
<tr>
<td>FGM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
پژوهش می‌تواند از معیارهای نشان‌دهنده سخت روش ریزی آن است که با افزایش تعداد جملات چند جمله‌ای تابع پذیرفته، مقایسه ععداد حاصل از حل غیر بدبی‌های مسئله به سمت اعداد مشخصی همگرا شوند که همان فرکانس‌های طبیعی ورق هستند. بدين منظر، در جدول ۲ همگرایی مذکور برای یک ورق بیضوی با شعاع کوچک ۱ شش بزرگ ۳ و ضخامت ۲/۰۰۲ متر اورده شده است. شناخت گرادین در این حالت برای با واحد در نظر گرفته شده است. مقایسه عدیدی این جدول به خوبی همگرایی حل حاصل شده را با افزایش تعداد جملات چند جمله‌ای (N₁ و N₂) نشان می‌دهد. ذکر این نکته همکاری است که نادی افزایش زمان أجرا برای کامپیوتر برای تعداد زیاد N₁ و N₂ به دلیل داشت.

<table>
<thead>
<tr>
<th>عدد</th>
<th>سه</th>
<th>دو</th>
<th>یک</th>
<th>N₁ × N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>27/997</td>
<td>269/326</td>
<td>2/22</td>
<td>SS</td>
</tr>
<tr>
<td>26/1325</td>
<td>27/997</td>
<td>201/326</td>
<td>2/22</td>
<td></td>
</tr>
<tr>
<td>21/326</td>
<td>17/847</td>
<td>25/5420</td>
<td>2/22</td>
<td></td>
</tr>
<tr>
<td>3/1</td>
<td>17/847</td>
<td>25/5420</td>
<td>2/22</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>17/847</td>
<td>25/5420</td>
<td>2/22</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>17/847</td>
<td>25/5420</td>
<td>2/22</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>17/847</td>
<td>25/5420</td>
<td>2/22</td>
<td></td>
</tr>
</tbody>
</table>

این اخبار SA اختصار AA و SS به ترتیب نشان‌دهنده مودهای متفرق-پادمتفرق-پادمتفرق-متفرق-متفرق-پادمتفرق و متفرق-پادمتفرق-پادمتفرق-پادمتفرق متفرق-پادمتفرق-پادمتفرق-پادمتفرق می‌باشد. نظر به تفاوت‌های مذکور نسبت به محورهای کویک و بزرگ بیشتر می‌باشد.
به منظور حصول اطمینان از صحت حل صورت
پذیرفته در جدول ۲ و ۳ بکر / همکاران[۲۳] برای ارتعاشات
اراد ورق‌های نارک دابوری FG انجام شده است. بدین
منظور شعاع‌های کوچک و بزرگ بین فاصله با
یکدیگر و برای با ۴ متر فرض شده است. لازم به ذکر
است که مطالعه مرجع [۲۳] برمنامه روش جداسازی
متغیرها برای ورق‌های دابوری انجام شده است.

مقايسه انجام شده در جدول ۲ برای یک ورق دابوری
گیردار می‌باشد. این مقایسه به ازار مقام‌های
مشخص شرایطی انجام شده است. عمل معمولی
ورق‌ها مربوط به حل شکل و نمایی مربوط به مطالعه
جغرافیایی مهدی و همکاران[۲۳]. صحت حل انجام
شده را تایید می‌کند.

در جدول ۲ نقیاً مقایسه‌های ورق دابوری FG بر حسب فرکانس (Hz) با شرایط مزرعی له گیردر

<table>
<thead>
<tr>
<th>%Diff 2</th>
<th>%Diff 1</th>
<th>FEM</th>
<th>Present</th>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰</td>
<td>۱۵</td>
<td>۱۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۴۳</td>
<td>۴۱</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰</td>
<td>۱</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۰</td>
</tr>
</tbody>
</table>
جدول ۴- مقایسه فرکانس‌های ورق دیاپوزیتیف (Hz) بر حسب سه‌تایی‌های (FEM) [۱] با شرایط مرزی تیکه‌گاه ساده

<table>
<thead>
<tr>
<th>%Diff 2</th>
<th>%Diff 1</th>
<th>FEM [۱]</th>
<th>مرجع</th>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۸۴۲۷۷</td>
<td>۶۴۶۷۷۰</td>
<td>۱</td>
<td>۱۸۸۳۱۱</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۹۰۶۹۶</td>
<td>۹۹۸۹۶۶</td>
<td>۲</td>
<td>۱۸۷۱۰۳۲</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۳۲۳۲۲</td>
<td>۴۳۲۳۲۲</td>
<td>۳</td>
<td>۱۸۳۱۶۷۷</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۴۵۳۴۳</td>
<td>۴۴۵۳۴۳</td>
<td>۴</td>
<td>۱۸۳۱۶۷۷</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۴۰۳۴۳</td>
<td>۴۴۰۳۴۳</td>
<td>۵</td>
<td>۱۸۱۱۹۵۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۰۳۴۳</td>
<td>۴۱۰۳۴۳</td>
<td>۶</td>
<td>۱۸۷۸۹۵۵</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۴۱۰۳۴۳</td>
<td>۴۱۰۳۴۳</td>
<td>۷</td>
<td>۱۷۹۷۷۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۰۳۴۳</td>
<td>۴۱۰۳۴۳</td>
<td>۸</td>
<td>۱۷۹۷۷۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۰۳۴۳</td>
<td>۴۱۰۳۴۳</td>
<td>۹</td>
<td>۱۷۹۷۷۵</td>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۰۳۴۳</td>
<td>۴۱۰۳۴۳</td>
<td>۱۰</td>
<td>۱۷۹۷۷۵</td>
<td>۱</td>
<td></td>
</tr>
</tbody>
</table>

این جدول، تکیه‌گاه ساده می‌باشد. لازم به ذکر است که شکل پیش‌تر (۲۱) تعبیر شده است، در نتیجه کلاسیک ورق مستقل از شرایط آن است. نتایج این جدول نیز همخوانی و سازگاری بسیار مناسب بین نتایج را تایید می‌نماید. همانگونه که مشخص است با افزایش نسبت قطر، فرکانس‌های ورق کاهش می‌یابد.

مسالم، هنگامیکه شاخص گراندیان به سمت صفر میل می‌کند و ورق به صورت همگن در می‌آید در جدول ۵، فرکانس‌های ورقی بی‌بیش در ورق همگن بیشتر با نسبت‌های متغیر از قطر کوچک به قطر بزرگ، با مقادیر مشابه بدست آمده توسط سیریس و آنتالی [۲۴]، لیسا [۲۱] و سیلن و چاکوارشی [۲۵] مقایسه‌شده است. شرط مزیت فرض شده برای ورق در...

جدول ۵- مقایسه فرکانس‌های تیکه‌گاهی بی‌بیش ورقی بی‌بیشی از دیاپوزیتیف

<table>
<thead>
<tr>
<th>a/b</th>
<th>%Diff 2</th>
<th>%Diff 1</th>
<th>مرجع</th>
<th>n</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰</td>
<td>۹۵۲۷۷۷</td>
<td>۹۵۲۷۷۷</td>
<td>۵۱</td>
<td>۱۸۸۳۱۱</td>
<td>۱</td>
</tr>
<tr>
<td>۹۵</td>
<td>۹۵۲۷۷۷</td>
<td>۹۵۲۷۷۷</td>
<td>۵۱</td>
<td>۱۸۸۳۱۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

سال هشتم، شماره ۱۵، بهار و تابستان ۹۱
شکل ۲- تغییرات فرکانس‌های طبیعی به بعد ورق بیضوی FG بر حسب نسبت قطرها

برای شیب سازی مدل FGM در این تمرین افزار، در راستای ضخامت ورق، ۲۰ ماده همگن مختلف تعیین شده که معرف نحوه تغییر ترکیجی خواص مکانیکی ورق در راستای ضخامت می‌باشد. برای تحلیل ارتباطات آزاد نیز از روش Lanczos استفاده شده است.

در استخراج نتایج ترم افزار، همگرايی فرکانس‌ها مورد بررسی قرار گرفت تا از دقت آنها اطمینان حاصل شود. در این جدول، FGM به بعد ورق بیضوی با نسبت شعاع بزرگ به شعاع کوچک ۳ و نسبت ضخامت به شعاع کوچک ۱/۲ به همراه مقدار ورق شاخه‌گرایان برای آورده شده است. نتایج موجود در جدول گواه آن است که فرکانس‌های بدست آمده از روش ریزی بسیار نزدیک به نتایج الال محدود در نرم‌افزار ABAQUS می‌باشد.

به منظور بررسی تأثیر شاخه گرادیان، در جدول ۵، FGM2 فرکانس‌های طبیعی پایه دربی به ورق بیضوی با شرایط مرزی مختلف و مقدار متفاوت شاخه گرادیان ارائه شده است. ورق دارای نسبت شعاع بزرگ به شعاع کوچک ۲ بوده و نسبت ضخامت به شعاع کوچک ۱/۲ فرض شده است.

این امر به دلیل کاهش ضخامت ورق می‌باشد، که با افزایش نسبت مذکور، ورق از شکل‌داری با مدت طولانی‌تری، این ساده‌تری چنین از مورد ورق‌های بیضوی FG نیز صادق است. در تایید این موضوع، نمودار تغییرات فرکانس‌های طبیعی اول ورق FG بر حسب نسبت a/b در شکل ۳ نشان داده شده است.

همانگونه که در این شکل مشخص است، هنگامی که نسبت شعاع‌ها برای با واحد یا یک ایجاد می‌شود از این چنین اختلاف بین فرکانس‌های طبیعی وجود دارد. حال آنکه با افزایش این نسبت، مقدار اختلاف مذکور کاهش یافته، در ضمن اینکه تقاضا در این ورق از طرف مذکور کاهش یافته و ممکن است به سمت مقدار مشخصی می‌کند.

در جدول ۶ نسبت پایین از کد کامپیوتری برای ورق FGM با نسبت آن که از طرف ترم افزار ابزار ABAQUS محور می‌باشی یا ابزار ABAQUS محور FGM2 تغییر می‌باشد واقع شده است. لازم به ذکر است که برای مدل‌سازی فرمول ۳D stress نوع تشخیص سه‌بعدی (3D stress) است. برای رسیدن به فرکانس همگرا شده استفاده شده است. همچنین، به فرکانس‌های طبیعی اول ورق a/b شکل ۳ نشان داده شده است.
جدول 6 - مقایسه سه فرکانس طبیعی اول بیه ورق بیضوی FGM2 با شرایط مرزی مختلف

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>نرخ روش</th>
<th>نتیجه‌گاه ساده</th>
<th>لبه گیردار</th>
<th>لبه آزاد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>967679</td>
<td>8/64864</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94505</td>
<td>8/64864</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94505</td>
<td>8/64864</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7 - تأثیر شاخص گرادیان (g) بر فرکانس‌های بیه بعد یا (Λ²) ورق بیضوی FG با شرایط مرزی مختلف

<table>
<thead>
<tr>
<th>لبه آزاد</th>
<th>نتیجه‌گاه ساده</th>
<th>لبه گیردار</th>
<th>لبه آزاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>967679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8/64864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/64864</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میل کردند شاخص گرادیان به سمت بی‌نهایت، خصوصیات مکانیکی ورق FG به سمت یک ماده همگن می‌کند. در جدول 6، بین فرکانس‌های بیه بعد ورق بیضوی FGM1 با نسبت شاخ‌بزرگ گره شعاع کشک 2 و نسبت ضخامت بیشتر که شعاع کشک 5/0 بر اساس مدل ABAQUS روی رنگ و مان محدود در نرم افزار ارائه شده است. این نتایج عرضه برای شرایط مرزی مختلف و فرض شاخص گرادیان و احتمال مشاهده یافته در همواره مناسب بین مقادیر عده‌ای فرکانس‌های طبیعی بیه بعد که از دور روش استفاده نمی‌شود. FGM1 صحت روش حجم تحلیل حاضر را برای ماده تایید می‌کند.

همانطور که در این جدول دیده می‌شود، به ازای همه مقادیر شاخص گرادیان و شرایط مرزی مختلف، با افزایش فرکانس‌های طبیعی افزایش می‌یابد. این امر به دلیل آن است که ورق در موده‌های بالاتر سفتی بیشتری را از خود نشان می‌دهد. نتکه دیگری که از این دو جدول استنتاج می‌شود که فرکانس‌های طبیعی ورق به ازای افزایش شاخص گرادیان می‌باشد. زیرا همانگونه که در شکل 2 دیده می‌شود، با افزایش شاخص گرادیان، مقدار متوسط سفتی ورق کاهش می‌یابد. نرخ کاهش فرکانس‌های طبیعی شاخص گرادیان کاهش می‌یابد، به نحوی که مشاهده می‌شود که پس از آن که شاخص گرادیان از 7 بیشتر می‌گردد. نتیجه‌گیری قابل توجهی در مقادیر فرکانس‌های طبیعی ورق مشاهده نمی‌شود، چرا که بر اساس روابط (2) و (3)، با...
جدول 8- مقایسه پذیرفتن فکرانسی طبیعی اول بر بی ورق بیضوی FGMI با شرایط مرزی مختلف

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>نوع روش</th>
<th>λ_i^2</th>
<th>λ_i^2</th>
<th>λ_i^2</th>
<th>λ_i^2</th>
<th>λ_i^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحلیل ریتز</td>
<td>آنتیگون (ایاکوس)</td>
<td>0.3764</td>
<td>3.4772</td>
<td>5.2890</td>
<td>7.5502</td>
<td>9.8336</td>
</tr>
<tr>
<td>تحلیل ریتز</td>
<td>آلیان محدود (ایاکوس)</td>
<td>3.1849</td>
<td>1.9376</td>
<td>5.4854</td>
<td>8.8342</td>
<td>11.2230</td>
</tr>
<tr>
<td>تحلیل ریتز</td>
<td>لیه گیردار</td>
<td>2.3856</td>
<td>3.2845</td>
<td>4.3256</td>
<td>5.4235</td>
<td>7.5243</td>
</tr>
<tr>
<td>تحلیل ریتز</td>
<td>آلیان محدود (ایاکوس)</td>
<td>4.2856</td>
<td>5.2845</td>
<td>6.3256</td>
<td>7.4235</td>
<td>8.5243</td>
</tr>
</tbody>
</table>

در پایانی به منظور آن که درک بهتر و تصویر روش‌ترین نسبت به نحوه ارتعاش ورق‌های پیچوی و همچنین موهدهای ارتعاشی متقابل- متقابل، پادمتقابل- همکاران، متقابل- همکاران و پادمتقابل- همکاران حادث شود تعدادی از اشکال موجه ورق‌های پیچوی FGM با تردد FGM بروز افتاد. مدل‌های ارتعاشی وبر هر ارتعاش طبیعی محاسبه شده است. این کار با استفاده از کد کامپیوتری که در نرمافزار

MATHEMATICA توسعه داده شده است. این کد موجه ورق‌های FG با لبه آزاد که ورق‌های مرتب ورق‌های BA دارای شعاع کوچک، شعاع بزرگ و شاخه ای و $\frac{1}{3}$ و $\frac{1}{10}$ متری می‌باشد. در شکل 4 نشان داده شده است. در تمامی این موارد شاخه‌گردایان برابر با یک می‌باشد. لازم به ذکر است که مقدار فکرانسی طبیعی متوسطاً بر هر شکل مورد بررسی هر (Hz) در زیر آن اورده شده است. همچنین به منظور بررسی تاثیر شرایط مرزی بر رفتار ارتعاشی ورق‌های پیچوی، تعدادی شکل مورد مطالعه با شرایط مرزی تکه‌گاه ساده و لبه گیردار، به ترتیب در شکل‌های 5 و 6 آزاد شده است.

5- نتیجه‌گیری

در مطالعه حاضر، یک تحلیل ارتعاش با شرایط مرزی نشان داد که می‌تواند نسبت به نحوه ارتعاش ورق‌های پیچوی و همچنین موهدهای ارتعاشی متقابل- متقابل، پادمتقابل- همکاران، متقابل- همکاران و پادمتقابل- همکاران حادث شود تعدادی از اشکال موجه ورق‌های پیچوی FGM با تردد FGM بروز افتاد. مدل‌های ارتعاشی وبر هر ارتعاش طبیعی محاسبه شده است. این کار با استفاده از کد کامپیوتری که در نرمافزار

MATHEMATICA توسعه داده شده است. این کد موجه ورق‌های FG با لبه آزاد که ورق‌های مرتب ورق‌های BA دارای شعاع کوچک، شعاع بزرگ و شاخه ای و $\frac{1}{3}$ و $\frac{1}{10}$ متری می‌باشد. در شکل 4 نشان داده شده است. در تمامی این موارد شاخه‌گردایان برابر با یک می‌باشد. لازم به ذکر است که مقدار فکرانسی طبیعی متوسطاً بر هر شکل مورد بررسی هر (Hz) در زیر آن اورده شده است. همچنین به منظور بررسی تاثیر شرایط مرزی بر رفتار ارتعاشی ورق‌های پیچوی، تعدادی شکل مورد مطالعه با شرایط مرزی تکه‌گاه ساده و لبه گیردار، به ترتیب در شکل‌های 5 و 6 آزاد شده است.

1-Functionally Graded Material
2-Heating, Ventilation and Air Conditioning
3-Abrate
4-Yang and Shen
5-Allahverdizadeh et al.
6-Hosseini-Hashemi
7-Differential Quadrature Method
8-Leissa
9-Sing and Tyagi
10-Beres
11-Ceribasi and Altay
12-Praveen and Reddy
13-Jafari Mehrabadi et al.
14-Singh and Chakraverty
شکل 4-الف- شکل موجهای متقارن- متقارن و پادمتقارن- بادمتقارن یک ورق برای موارد

FGM

واژگان: 55

سال هشتم/ شماره 15/ بهار و تابستان 91
شکل ۴-ب- شکل موهای مقترن- پادمقرن و بادمقرن- مقترن یک ورق بیضوی FGM با لبه آزاد
Simply support (AA)
Simply support (SS)

(a) 63.7805

(b) 93.2251

(c) 137.711

(d) 219.213

(a) 14.2736

(b) 29.9934

(c) 54.9838

(d) 109.007

شکل 5- شکل موهای متقاون- متقاون و پادمتقاون- پادمتقاون یک ورق بیضوی FGM با لبه تکیه‌گاهی ساده
Clamped (SA)
(a) 79.1078

Clamped (AS)
(a) 37.7329

(b) 106.618
(b) 59.5385

(c) 144.283
(c) 91.2537

(d) 214.297
(d) 148.664

شکل 6- شکل‌های مقایسه‌ای پادمتفارن و پادمتفارن- مقاران یک ورق بیضوی با لبه گردار FGM