Introducing a Novel Method for Measurement of Stationary and Dynamic Torsion in Shafts – With Application to Monitoring of Torsional Vibration

Mohammad Samavatian1, Majid Rajabi2, Seied Mehdi Darbandi3, Mehdi Behzad4*, Mehdi Alvandi

1 Department of Mechanical Engineering, Sharif University of Technology, Tehran, m.samavatian87@gmail.com
2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, majid_rajabi_iust@yahoo.com
3 Department of Mechanical Engineering, Sharif University of Technology, Tehran, s.m.darbandi@gmail.com
4 Department of Mechanical Engineering, Sharif University of Technology, Tehran, m_behzad@sharif.edu
5 Department of Mechanical Engineering, Sharif University of Technology, Tehran, alvandi1365@yahoo.com

ARTICLE INFO

Article History:
Received: 9 Jul. 2015
Accepted: 21 Aug. 2016

Keywords:
Measurement torsional vibration
Signal to noise ratio
Signal transmission
Electrolysis

ABSTRACT

Strain gage mounted on the surface of the shafts with specified directions are one of the common methods for measurement of the torsion in shafts. The most critical problem in utilization of this method, particularly in the online monitoring of torsional vibration and instantaneous torque in rotary systems, is due to its signal transfer process. In this paper, a simple, practical and feasible method is introduced based on the usage of an unified fluid medium with adequate electrical conductivity, encapsulated in a cylindrical connector aligned along the shaft, with a rotating chamber (rotor part) and a stationary one (stator part). In this method, there is no need for installation of the power supply on the shaft and both of the supply voltage and the generated electrical signals are transferred via the unified fluid. Simplicity in design and high signal to noise ratio, may candidate this high method for torsional vibration measurement. The efficiency of the measurement system is examined on a test setup, for static and dynamic (transient) torsions. Moreover, the applicability of the device is observed on a rotating shaft.
مقدمه
وقوع بیکری علی الخصوص به صورت ازاعت‌های آخردهی، به عنوان بخشی از عوامل و املائی در روند جدیده و گیره شناخته می‌شود. ازاعت‌های بیکری از طریق تغییر در سرتاره و تغییر در بازار گزارش می‌شوند. در بررسی‌های اخیر در مورد تغییر مصرف محوره در گانکووی و پیچانه به‌طور گسترده شده‌است، نوشتاری‌ها در روند اقدامات بازاریابی کمک‌رسان، عدم یکنوشتار و گروه‌های بازاریابی فراکس را در ادغام و گیره‌ها می‌گیرد (۲). از این‌جایی، بررسی از ارتباط بیکری بر خلاف سایر مولفه‌های ارتباطی حمایتی محوری و محوری، بیان می‌شود. ملاحظات، این تجربه به تسلیم می‌باشد. در این‌جا، استفاده از کارشناسی و استادی از جمله محوری و محوری بودن، انتقال بین دانشمندان و اخلاق‌شناسی مطرح می‌شود. از این‌جایی، نحوه استفاده از سیستم‌های بیکری در محوری به وجود آمد در کارشناسی محوری به خصوص در تحلیل‌های دور می‌باشد. مطالعات مختلف انجام شده در زمینه ادغام بیکری بیکری در محوری (خواه از نوع دینامیک و خواه از نوع استاتیکی) با استفاده از کارشناسی نشان‌گر استفاده از سطح کلی ممیزی، تماسی و غیر تماسی به منظور نقل و انتقال سیستم‌های محوری شده است.

۱. کاربردهای صنعتی مناسبی‌نام‌بندی

در روش‌های غیر تمامی، زابل و همکاران (۱) سیستم اندازه‌گیری گشدار بیکری را برای بررسی فرمون امکان worldview طراحی و اخایند. این سیستم، برای اندازه‌گیری گشدار بیکری از کارشناسی محوری استفاده شده است. همچنین برای انتقال سیستم از روند به استفاده می‌باشد، دامن و موثرورکی ویژه در سنی می‌باشند. ویژه اندازه‌گیری انتقال شبکه به بیکری محوری، در روش‌های غیر تمامی از سیستم‌های بیکری در محوری استفاده شده است. لینگ و همکاران (۱) از سیستم‌های بیکری تولید که به دلیل ضریب‌های بیکری یک‌طرفی توان ویرایش می‌شود را توصیه نمودند. در این‌جا، برای استفاده در محور محوری، همچنین نشان داده شده است که این روش در عین‌آسایی است. قابلیت کلیدی در مهن محل اندازه‌گیری بیکری، از روش‌های تولید کننده‌ها در این حوزه، ویژه تولید کننده‌ها و از دیگر تکنولوژی‌های مورد استفاده از راه دور (۱۲)، بیکری (۱۳)، سیستم‌های محوری (۱۲) انتقال‌های بیکری شکل (۱۴) و همکاران (۱۴) انتقال‌های بیکری شکل (۱۵) و همکاران (۱۵) انتقال‌های بیکری شکل (۱۶) و همکاران (۱۶) انتقال‌های بیکری شکل (۱۷) را می‌توان نام برد. در این‌جا، بررسی از استفاده از سیستم‌های بیکری در محور محوری، تا محدوده‌ای در بازاریابی بالاتری در قیاس با دریافت‌های محور محوری، ممکن است در این حال بسیار دقیق نیست. با عادات مشکل این سیستم‌ها، ظرفیت تحمل بسیار بیش از آنها در مقابل با یک‌طرفی محور محوری می‌باشد با علاوه بر این، این سیستم‌ها توانایی گرایش می‌باشد.

سایر روش‌های غیر تمامی دیگر همچنین استفاده از لیزر با سیستم‌های لیزری، از صورتی استفاده از نجابت‌های جانبی دارد و نسبتاً قائم ریتم اثر مرد. همچنین، حساسیت و تثبیت‌بردی از مقدار اندازه‌گیری شده دارد.

۲. نتیجه‌گیری

به‌طور کلی، این تحقیق نشان می‌دهد که در انتقال اطلاعات، بیشتر به اینکه با میزان و همیشه ریگنی و ریگنی و زاغ‌ها را تمیز ماورد (۲۲) همچنین بی‌گمانی وجود آمده در محل سایش و اتصال ریگنی و زاغ‌ها، تاثیر قابل توجهی در مقدار اندازه‌گیری شده دارد.
ساب مولفه‌های ارتعاشی (ارتعاشات خمشی و جودر) نیز تعیین یافته‌اند
روش‌های ارتعاشی که روزگارانی دارند، از جمله اندازه‌گیری جودر و تغییر موتوری با
روش‌های ارتعاشی بیشترین قابلیت با محصولات بیرونی می‌دارند.

لذا این پژوهش یکی از این ابزارهای مبنی بر استفاده از یک
سیال وسط پویه‌بری شده (الکترولیت) برای انتقال سیگنال‌های
الکتریکی به وجود آمده بر روی کرنش سنج می‌باشد که بر روی محور
دوار، به منظور استخراج از ارتعاشی بیشترین قرار می‌گیرد
دوام به منظور استخراج از ارتعاشی بیشترین قرار می‌گیرد
می‌گردد. تا علاوه بر عدم نیاز به وجود منبع تغییرهای بروی سیستم
دوام از ابجود بیشتر مشابه با مصرف ماده وسط انتقال سیگنال,
جلگریگری شد. برای بررسی کارایی روش طراحی شده، یک
سیستم آزمایشگاهی طراحی و ساخته شده است و با انجام
محصولات از سه‌های استاتیکی و دینامیکی، عملکرد سیستم
طراحی شده مورد تست واقع شده است. سیستم پیشنهادی,
سیستم اندازه‌گیری آب و پاش گشدار وارده بر محوی انتقال در

2- بررسی قابلیت انتقال سیگنال الکتریکی توسط سیال

یونیزه شده ی دوبار

2-1- یونیزاسیون سیال وسط

همان‌طور که شیب ضایع، ایده اصلی انتقال سیگنال‌های الکتریکی,
اوجاد شده بر روی مدار کرسی سنج، استفاده از یک سیال وسط
یونیزه شده می‌باشد که در یک محصول نمونه‌ای استفاده
می‌گردد. سیال یونیزه شده، به دلیل وجود بخار الکتریکی
الکتریکی ازد، انتقال سیگنال الکتریکی را خوشه‌دانش.

dهم‌اکنون سیال بخار ماده وسط، موج‌های یک می‌باشد که در

در نتیجه، وسعت بزرگ‌تری می‌گردد. همه‌نور، خیلی از می‌باشد.

سیال‌های کارا که نسبته‌ای از آن‌ها
برای سلامتی کاربران و جهش در بر می‌رسید. از این سیلول‌های
در پژوهش حاضر، از این سیلول‌های

سیلول‌های الکتریکی بسیار بالا (اکسای) نیز با ارزش فنی، ماکاک‌پرای
افزاری ایمن مصرف، استفاده می‌گردد. واکنش الکترولیت
در آن‌جا به درمان، و آگاهی و محصولاتی بیرونی ایجادی در مواجه با

آب مطلق جدول 1. روش

2-2- امکان سنجی انتقال سیگنال الکتریکی در حالت

دوار

این ابزار سیستمی جهت بررسی نحوه و کیفیت انتقال سیگنال‌های
الکتریکی به وجود آمده بر روی کرنش سنج می‌باشد که بر روی محور
دوار، به منظور استخراج از ارتعاشی بیشترین قرار می‌گیرد
مختصات اندازه‌گیری از یک سیال درون یک
محفظه استاندارد قرار دارد ماهیوتی 3 مذکور، دارای دو روشی
برای پخش شده که روبرو دوی از جنس

[110] مهربان و همکاران / نشریه مهندسی دریا، سال دوازدهم(19), بهار و تابستان 95, 010-011 (1412)
برای تولید سیگنال مرجع (ورودی) واالت پایین و کیفیت بالا (دون نیور)، از دستگاه مدل سیگنال ۱۰۱ خصت رشته الکترونیکی افزار آزمایشات شده است. بک دستگاه منع غنی، برای عضوی تووان مورد نیاز موتور و برای نمایش سیگنال عبوری از سیال، از دستگاه اسلوکوپ ۱۰۵ استفاده شده است. برای ذخیره و نمایش سیگنال عبری، از دستگاه ورودی داده‌برداری ۱۷ ساخت شرکت اوتونکس استفاده شده است. بررسی سیگنال و استخراج پاسخ فرکانسی نیز در نرم افزار مدل انجم گرفته شده است. سیال مورد استفاده این سیستمیک رقیق شده است. انتظار گرفته‌ها در دو حالت ایستا و دو انجام شده است. سیگنال ورودی، موجی سینوسی به فرکانسی ۱۰۰ هرتز و ولتاژ حدود ۱.۵ میلی ولت شده است.

پاسخ زمانی سیگنال ورودی و سیگنال مورد اندازه‌گیری در دو حالت سیال ساکن و دوار به ترتیب در شکل‌های ۳ و ۴ مشاهده می‌شود. اختلاف فاز مشاهده شده در این سیگنال، به دلیل اختلاف در شروع زمان اندازه‌گیری سیگنال آنالوگ ولتاژ است. همچنین، پاسخ‌های فرکانسی مورد نظر نیز به ترتیب در شکل‌های ۵ و ۶ مشاهده شده است. همان‌گونه که ملاحظه می‌شود، تغییر قابلیت مابین سیگنال‌های الکتریکی ورودی و خروجی وجود دارد. به علاوه، با توجه به امکان انالوگ سیگنال، مقادیر جذب سیگنال مربع‌های ۱۶ سیگنال‌های مذکور که نشان‌دهنده انرژی سیگنال می‌باشد، محاسبه نموده و در جدول ۲ آورده شده‌اند. انتقال بیشتر ناشی از فرایند عبور سیگنال‌ها نیز جابجایی بوده و نتیجه بخش قابلیت جزئی‌سازی این دستور نظر در این پژوهش می‌باشد. همچنین مقدار SNR (نسبت سیگنال به نویز) برای نویز نسبت بمباران‌های به دست آمده شده ۳۹.۱۸۱۲ دی‌بی به دست آمده که نشان‌دهنده نویز سیگنال‌هایی با دارای در دامنه ولتاژ RMS ۱.۵ میلی ولت شده است.

جدول ۲ - مقادیر SNR و فرکانس سیگنال اصلی سیگنال‌های ورودی به سیال و خروجی از سیال در دو حالت ساکن و دوار

<table>
<thead>
<tr>
<th>جذب سیگنال‌های مربع‌های سیگنال اصلی</th>
<th>جذب سیگنال‌های مربع‌های سیگنال ایستا</th>
<th>جذب سیگنال‌های مربع‌های سیگنال دوار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰/۰/۰</td>
<td>۱۰۰۰/۰/۰</td>
<td>۱۰۰۰/۰/۰</td>
</tr>
</tbody>
</table>

شکل ۶ - تابعیت زمانی سیگنال ورودی و خروجی - حالت ایستا

شکل ۵ - فرکانسی سیگنال خروجی از سیال و سیگنال اصلی تولید شده از دستگاه مدل سیگنال - حالت ایستا

شکل ۴ - تابعیت زمانی سیگنال ورودی و خروجی - حالت دوار

شکل ۳ - تابعیت زمانی سیگنال ورودی و خروجی - حالت ایستا
3- پیکر مجموعه کرنش سنج، کانکتور انقلاب دهنده

سیگنال و سیستم داده برداری

3-1- انگیزه نوع کرنش سنج و نحوه آرایش بر روی محرور
کرنش سنج انتخابی، نیازمند حساسیت بالا، پایداری مدار الکترونیکی، رفتار خطر و پسماند کم می‌باشد. همچنین، حساسیت پایین هم عوامل ایجاده قسمتی و جرم گویچی است. باید دو نوع سنج مورد استفاده از نوع مثالی که

و ماهیتی تشکیل دهنده آن، تغییر در نوع پایین‌‌هایی به دلیل

بیشترین مقدار حساسیت ممکن به کرنش امکانات انتخاب گردد.

نحوه استقرار کرنش سنج بر روی محرور به منظور اندازه‌گیری کرنش‌های اصلی و ارتباط آنها با کرنش پیچیشی، به صورت یک جفت دوتبی به صورت یک‌پایه و رو به واژای 45 درجه نسبت به استفاده محرور و اساس مدار بیل تونسن طراحی گردید. این

چیدمان به یک کامل 18 شرط دارد. شکل 7 شماتیکی از نحوه چیدمان را نمایش می‌دهد. این نوع چیدمان، موجب حذف از

تغییر شکل‌یا خشک و محرور و تب تغییرات دما محیط بر روی ولتاژ خروجی کرنش سنج می‌گردد. نحوه اصاص

کرنش سنج بر روی شکل بر منظور استفاده از جعبه استفاده‌‌های مخصوص اتصال کرنش سنج بر روی فلز صورت می‌بند. برای

کاربردهای حساس، اتصالات دامی ضرورت می‌باشد.

3-2- کشتار امکان، کرنش بریش و ولتاژ ایجادی
برای یک بیل تونسن کامل، نسبت تغییرات ولتاژ دو سر مدار به ولتاژ منع (مطلق شکل 2) بر اساس رابطه (1) توصیف گردد

\[
\delta V_{ref} = \frac{k}{R} R_1 \delta R_1 - \frac{R_2 R_3 R_4}{R_1 (R_1 + R_2)^2} \left(R_3 \delta R_3 - R_4 \delta R_4 \right)
\]

(1)

برای حالات مورد استفاده در این پژوهش که نمای مقادرونها

یکسکان می‌باشد، این رابطه به صورت رابطه (2) ساده می‌گردد

\[
\delta V_{ref} = \frac{k}{R} \delta R
\]

(2)

در رابطه 2 کل می‌باشد که برای یک بیل تونسن مورد

استفاده، برای یک می‌باشد. از طرفی، ماسیابیت تغییرات مقدار

الکترونیکی بجای آمده با کرنش اصلی امکان به هر طراحی

کرنش سنج، رابطه ی (3) برقرار است

شکل 7- تصویر شماتیک چیدمان کرنش سنج بر روی محرور به صورت پل کامل

109
2- کانکتور انالوگ سیگنال الکتریکی
کانکتور انالوگ سیگنال شامل بی‌روه خارجی از جنس نفلون و
پی‌روه داخلی از جنس PTFE می‌باشد. مجموعه این محکفه،
یک بخش مجزا می‌باشد که توسط آب نشنا و واقعی استاندارد
سیگنال و ولتاژ مرجب، ولتاژ خروجی کننده ولتاژی مثبت و
نفی IC منفی IC می‌باشد. هر یک از محکفه‌ها از محول اکترو
الکترونیک شامل سیستم‌های فنی و تغییرات فنی شده اشباع شده است.
روده داخلی، به منظور جلوگیری از نوسان استاندارد سیال الکترونیک
با محور دراو می‌باشد که از برود نوری اضافه ممکن استفاده
رحمه و حفظ می‌باشد. روش اکثر روش‌های متناسبی دارد. یک
شکل 11 روش خارجی را نمایش می‌دهد.

3- آب بندي کانکتور
برای پیدا کنندی مکانیکی مجموعه کانکتور، از کاسه‌دهنده نوع کلیر
استفاده شده است[21]. جنس آب نوع آب‌دانه‌ها، مواد عقیق، بررسی
عمولة با نیروی حرارتی با را فراموش می‌کند. یک روش
قاره‌گیری این نوع آب‌دانه بر روی محور با صورت شماتیک در
شکل 12 نشان داده شده است. مجموعه واقعی روش خارجی کانکتور در
شکل 13 نشان داده شده است.

4- عملکرد مکانیکی و الکتریسیون
به منظور کالپیسراسیون استاتیکی مجموعه ی اندازه‌گیری،
از یک سیستم مکانیکی شامل دو دیسک و یک عضد میله و استاندارد
استفاده می‌گردد که توسط یک موتور الکتریکی قادر به حرکت
می‌باشد. شکل 12 نشان می‌دهد مجموعه را نشان می‌دهد.
هم‌اکنون که دیده می‌شود، مجموعه کانکتور توسط دو عدد فر
دو طرف بر روی قاب ثابت گردیده است.

شکل 10- روشی داخلی مجهر به ورقه‌های مسی
شکل 11- روشی خارجی مجهر شده به ورقه‌های مسی
شکل 12- نحوه قرار گیری آب بندهای کانکتور
شکل 13- نحوه قرار گیری آب بندهای پیچشی

محفظه‌های نگهداری شده بر روی محور دوار

شکل 14- تصویر شماتیک نحوه قرار گیری آب بندهای پیچشی

شکل 15- محفظه قلب بندی
به منظور کالیبراسیون استاتیکی، یکی از دو دیسک را ثابت کرده و مقدار مختلفی از کشتار پیچشی را با قرار دادن وزنه‌های بر روی پایه کشتار تغییرهای شده بر روی دیسک غیر ثابت، مانند شکل 17 بر مجموعه اعمال می‌گردد. منبع 18 نمودار تغییرات ولتاژ کشتارسنج و گشتاور اعمالی را نمایش می‌دهد. همانگونه که ملاحظه می‌گردد، رفتار کشتارسنج و قراند انتقال سیگنال الکتریکی، یک رفتار خطی با ثابت کالیبراسیون 7/31/1016 می‌باشد که نشان دهنده عملکرده قابل قبول مجموعه ی اندامه گیری پیچش در حالت استاتیکی می‌باشد.

![LABVIEW](https://example.com/labview.png)

شکل 15 - نرم‌افزار بردارش سیگنال دیجیتال داده‌برداری

![شکل 16 - چیدمان کانکتور ب روی سیستم کالیبراسیون استاتیکی - دینامیکی](https://example.com/dynamical.png)

شکل 16 - چیدمان کانکتور بر روی سیستم کالیبراسیون استاتیکی - دینامیکی

![شکل 17 - بارگذاری استاتیکی به منظور کالیبراسیون استاتیکی](https://example.com/static.png)

شکل 17 - بارگذاری استاتیکی به منظور کالیبراسیون استاتیکی

![شکل 18 - نمودار ولتاژ ایجادی - کشتاور اعمالی](https://example.com/current-voltage.png)

شکل 18 - نمودار ولتاژ ایجادی - کشتاور اعمالی

![شکل 19 - عملکرد دینامیکی و گذرا به منظور بررسی قابلیت‌های مجموعه اندامه گیری در حالت دینامیکی (غیر ایستا)، ارتعاشات گذرا مجموعه دیسک و محور](https://example.com/dynamical.png)

شکل 19 - عملکرد دینامیکی و گذرا به منظور بررسی قابلیت‌های مجموعه اندامه گیری در حالت دینامیکی (غیر ایستا)، ارتعاشات گذرا مجموعه دیسک و محور
۳-۲ عملکرد دینامیکی و یا برای سیستم انداره گیری طراحی شده بر مجموعه ی دیسک و محور، طبقاً در حالی که آمارها نشان می‌دهد، فاصله و روانی در انتهای استخوان در حالت نمایش داده می‌شود. اما برای هر نوع نمایشدار مجموعه ذیلی‌کرده و طبقاً در حالت مطلوب، استفاده از یک مونیترون مناسب ضروری به نظر می‌رسد.

پایان مجموعه سیستم انداره گیری بر روی یک بی‌سیستم واقعی شامل محور تغییر شده اوسط یک دستگاه ماهیت راهشی مشابه شکل ۳۱ نسبت گردیده است. فرآیند انداره گیری در دوره‌های ۱۲۰۰ rpm، ۵۰۰، ۳۵۰، ۲۵۰، انجام می‌پذیرد. شکل‌های ۲۲، ۲۳، ۲۴ به ترتیب طبقه‌بندی زمانی و فرآیند انداره گیری در دوره‌های ۱۲۰۰ rpm از همان‌طوری که ملاحظه می‌گردد، هارمونیک‌ها سرعت دورانی x، ۲x، ۳x به طور مداوم مشاهده است و در دوره‌های پایین تر (شکل ۲۴) نسبت فرکانس‌ها به عنوان گالری ترین فرکانس‌ها مطابقت دارد. با توجه به منبع [۲۴]، در هر سر این فرکانس‌ها نشان دهنده عیب احتروف ایجاد چرخ دنده‌ها می‌باشد که یک عیب است که وضعیت سیستم ارتعاشات بی‌سیستم نشان داده شده است. لذا، عملکرد سیستم انداره گیری طراحی شده دارد در حالی که دیسک و محور مورد تابیت شده می‌گردد.

شکل ۹۹ - تغییرات زمانی گشتاور بی‌سیستم وارد بر محور در حالت ارتعاشات گذراز مجموعه

شکل ۳۱ - نسبت سیستم انداره گیری بر محور تغییر شده بر روی دستگاه ماهیت شناسی TN40

شکل ۲۰ - طبقه‌بندی فرکانس گشتاور بی‌سیستم وارد بر محور در حالت ارتعاشات گذراز مجموعه
شکل 22 - تغییرات زمانی گشدار پچشی اندازه گیری شده در سرعت

1120 RPM

شکل 23 - طیف فرکانسی گشدار پچشی اندازه گیری شده در سرعت

1120 RPM
Noise-measurement Prediction and Control; Preprints of Papers, p. 122.
11- X. Ling, L. Shudongand C. Wei, (2012), Measurement and analysis of torsional vibration signal for rotating shaft system, Fuzzy Systems and Knowledge Discovery (FSKD), 9th International Conference, p. 1851-1854.
12- T. Feese and D. Smith, (2009), Critical Equipment Measured in the Field, journal of Polytec InFocus.
13- Fraunhofer Institute, (2007), A Contactless Torque Sensor for Online Monitoring of Torsional Oscillations.
14- The Dow Chemical Company, (2011), FILMTEC Membranes Addendum: Conductivity of Solution, report number: 609-02127-804
16- P. W. Bridgman, (1931), Dimensional analysis, Yale University Press.

1- T. Feese and R. Maxfield), Torsional Vibration Problem With Motor/Id Fan System Due To PWM Variable Frequency Driver, in 37th Turbomachinery Symposium, Texas A&M Universitypp. 45-56.
10- R. Randall and D. Luo, (1990), Hilbert transform techniques for torsional vibration analysis, Australian Vibration and Noise Conference : Vibration and