Damage Identification of the Floating Wind Turbine Mooring Line by Fuzzy Classification

Aysan Jamalkia¹, Mir Mohammad Ettefagh², Alireza Mojtahedi³

¹MS student, Mechanical Engineering Department, University of Tabriz; aysanjamalkia@yahoo.com
²Assistant Prof., Mechanical Engineering Department, University of Tabriz; ettefagh@tabrizu.ac.ir (Corresponding Author)
³Assistant Prof. Civil Engineering Department, University of Tabriz; mojtahedi@tabrizu.ac.ir

ARTICLE INFO

Article History:
Received: 25 Sep. 2014
Accepted: 14 Apr. 2015
Available online: 22 Sep. 2015

Keywords:
Floating Wind Turbine
Damage Identification
Dynamic Simulation
3D Multi-Body System
Fuzzy Classification

ABSTRACT

Structural health monitoring is essential for ensuring the structural safety performance during the service life. The process is of paramount importance in case of the floating wind turbine due to the structural parts subjected to the marine environmental risky conditions. In this paper a fuzzy-based damage identification method using dynamic response of the Spar floating wind turbine has been proposed. In the first step, the nonlinear equations of motion of the floating wind turbine system derived using the theorem of conservation of angular momentum and Newton’s second law. Then the variation values of the frequency characteristics of the structure in each DOFs due to stiffness changes of mooring lines (simulated damage) are considered as input features to the fuzzy system. Also the fuzzy system was trained based on calibrating of the membership functions by defining the damage classes properly. For validating the proposed method, noise with different SNRs was contaminated to the measured features and the success rate of the damage detection was calculated. The results showed that the proposed method is able to identify the damage classes with acceptable success rate.
1- مقدمه

باهمی فراخالی متین مهم از تقید چینش دریم باشن. یا وجود اینکه بهره‌برداری از این متین‌های هزینه بردار است، اما برای دسترسی به نور باید با کمکی بالاخره قدرت باید به درون انطباق عملیاتی و همچنین کلیدکاری ناتوانی هزینه بود. همچنین انشغال فضا، این ساختار انطباقی دیگری در درون انطباقی می‌تواند، یا نزدیکان آنها به کار گرفته‌های می‌گردد. به طوریکه در سمتی که در شی‌دان، کاهش شناختی طراحی شده و مورد بهره‌برداری قرار گرفته است.

در اواخر سال ۲۰۰۹، توربین‌های باز دی‌شانی نشان و نظیر (TL) گرفته شدند [۱۰-1۱]. امروز توربین‌های بازی ساختاری نظیر (TL) در حال طراحی و ساخت در ابعاد از آزمایشگاهی باره و Spar تحت واقعیت محققین و شرکتگی عظیم در جهت آزمی‌بندی کارکردگی درون صحیح در مناطق دریا و آقاطری را دا [۱۰-۱۱] از انگیزه‌های تعمیر و نگهداری توربین‌های بازی معمولاً در حدود ۵ تا ۶ رایه‌های توربین‌های بازی معمول است. یکی از راه‌های کاهش این هزینه‌ها ارائه روش عیب‌یابی مناسب با نظر رلی، طولانی دریابی (یا انتقال با شناخته‌ای دیگر) که این منجر به ایجاد یک اسب که درد و پای تکه‌گیری (Anchor) آن شود. اگر نوع عیب قابل احتمال نشان دهنده شده و با استفاده از مشخصات حداکثر دیسیپلینیکی زده و کاهش فیزیکی فازی بر این سردر به ویژه نگاه خروجی تکاتیری شده و رازهایی از اینجا ناتوانی از آن جلوگیری به عمل می‌آید.

یکی از مهم‌ترین قسمت‌های طراحی الگویی اصلی روش‌های پیش‌پیجی‌ها به سازه و نگهداری با توجه به فناوری، ساختاری بی‌خوبی سازه‌های توربین‌های بازی مدل سازی دینامیکی به‌دست آمده که به‌مدت استقرار پایه‌سازی دینامیکی سازه توربین در روش درون دریابی از ایستاده و فوکال‌روده است. تاکنون این مطالعه مختلفی در زمینه سازی دینامیکی توربین‌های بازی شناسایی صورت گرفته است. اینکه از روش‌های گزینشی ساختاری به صورت سیستم‌پذیر (Multi-body) شناسایی باند، روتر، ناس و سایر قسمت‌های ایستاده که از طریق برپاره‌یها و هاب به هم متصل هستند. سپس از روش‌های اول-یکنواخت و سایر قسمت‌های ایستاده که این پاره‌های درونی بررسی و تایید شده است. تاکنون اینکه و صورت سیستم‌پذیر فناوری بی‌خوبی سازه‌های توربین‌های بازی مدل سازی دینامیکی به‌کار گرفته شده است. برای عیب‌یابی سازه‌ها، شامل توابع پاسخ فرانکسی (FRF)، اینکه تمایل‌ها، مشخصاتی که کا
در مرکز جرم برچ رNA و RNA دارند. فرض می‌شود مرکز جرم RNA در اتم‌داده ممور جرم برچ رNA دارند. این امر در ضرکی مصرف RNA چند یکه بر دیده می‌شود، اگر یکه در بین سیستم‌های مختلف با سهولت انجام خواهد دیده. ممکن است RNA در منطقه (X,Y,Z) و در مرکز جرم کل سیستم در نظر گرفته می‌شود که در حال تعلیق بر روی RNA به روش (A,B,C) به ترتیب در راستای ممورهای اصلی و RNA برچ و RNA برچ دارند.

مرجع [11]. با استفاده از معادلات اولر-بوتین، یک مدل کاهش مربوط به شده از توپرین از پایا شنار شار بر نظر. این گرفته از روشی که ممکن است مسیر جعبه نیست که در منطقه این واره‌ها از سیستم‌های رنگ و برخی از مدل‌های دیگر به همراه با روش Spar باید به شکل داده شده باشد. ممکن است نسیب به دیده حکم در مورد سایر این روش آمرنگ شده است با استفاده از معادلات پروینه که متفاوت با استفاده از محدودیت لازم در معیاس MATLAB می‌باشد. بعلاوه ساندرهای عیوب ارتباط به روش مورد مطالعه تفکر رگیده و مسیمی کلمان‌ندی فاری بر اساس این عیوب مورد آموزش قرار گرفته است. همانطور که سیستم‌های روش عمیق به می‌شناسی بر کلاس‌ندی فاری بر روی متغیرات دینامیکی سازه سالم و معیوب ارتباط شدسته. چرخ از روش پیشنهادی، این از روش شناسایی عیوب مختلف سازه به صورت نویز ابتدا می‌تواند، مستند استفاده گردد و نتایج با صورت درصد موفقیت عمیق به می‌شناسی است.
سمت چپ معادله (۲)، برای اینکه با گشتاور تمام نیروهای خارجی: می‌شود که در آن \(M_{\text{restoring}} \) حاصل از نیروی شاری و خطوط ماهی، \(M_{\text{wave}} \) و \(M_{\text{wind}} \) نیز به‌طور مستقل از گشتاور‌ها حاصل از نیروهای موج و باد می‌باشد. همچنین در سمت راست معادله (۱)، مومنت زاویه‌ای کل سیستم حول مرکز جرم کلی در شکل زاویه‌ای برج در دستگاه اینترسی بایستی با استفاده از زاویه‌ای اول و با توجه به شکل (۱) به صورت زیر بدست می‌آید:

\[
\omega_t = \omega_x + \omega_y + \omega_z
\]

\[
H_{G} = I_1 \omega_x + I_2 \omega_y + I_3 \omega_z
\]

\[
\left[\begin{array}{c}
I_1 = (I_1 \cos^2 \theta + I_2 \sin^2 \theta + m_{I_1}
ho_{I_1}) \\
I_2 = (I_3 \cos^2 \theta + m_{I_2}
ho_{I_2}) \\
I_3 = (I_2 \cos^2 \theta + m_{I_3}
ho_{I_3})
\end{array} \right]
\]

\[
\left[\begin{array}{c}
\omega_x = \frac{X_x \cos \theta \cos \omega_s + X_y \sin \theta \cos \omega_s + X_z \sin \omega_s}{I_1} \\
\omega_y = \frac{-X_x \sin \omega_s - X_y \cos \omega_s}{I_1} \\
\omega_z = \frac{X_z \cos \omega_s}{I_1}
\end{array} \right]
\]

\[
\sum M = \frac{d}{dt} H_{G} = \frac{d}{dt} H_{G} + \sum \omega_i \times H_{G}
\]

در نتیجه سرعت زاویه آن ها نیز با هم برای است (۱۲). در حالی که

\[
\omega_t = \omega_x + \omega_y + \omega_z
\]

\[
H_{G} = I_1 \omega_x + I_2 \omega_y + I_3 \omega_z
\]

\[
\left[\begin{array}{c}
I_1 = (I_1 \cos^2 \theta + I_2 \sin^2 \theta + m_{I_1}
ho_{I_1}) \\
I_2 = (I_3 \cos^2 \theta + m_{I_2}
ho_{I_2}) \\
I_3 = (I_2 \cos^2 \theta + m_{I_3}
ho_{I_3})
\end{array} \right]
\]

\[
\left[\begin{array}{c}
\omega_x = \frac{X_x \cos \theta \cos \omega_s + X_y \sin \theta \cos \omega_s + X_z \sin \omega_s}{I_1} \\
\omega_y = \frac{-X_x \sin \omega_s - X_y \cos \omega_s}{I_1} \\
\omega_z = \frac{X_z \cos \omega_s}{I_1}
\end{array} \right]
\]

\[
\sum M = \frac{d}{dt} H_{G} = \frac{d}{dt} H_{G} + \sum \omega_i \times H_{G}
\]
در رابطه فوق مشتق تاسوس انرژی است، که طبق تعیین مشتق
مانترس، برای برآوری تک گرمیهای نسبت به زمان
باید این نقطه است. در حالت اول می‌توان مدل اتمی از
سرعت زاویه‌ای آن است. برای بدست آوردن در جدایی انتقال
حرکت مرکز جرم توربین در نظر گرفته می‌شود که
طبق قانون دوم نیوتن:
\[
\sum \vec{F} = m \vec{a}
\]
در آن شتاب مرکز جرم کل سیستم، \(\sum \vec{F} \) هم مجموع ترم نیروهای خارجی (X,Y,Z)
در دستگاه \(\vec{X}', \vec{Y}', \vec{Z}' \) باشند که شامل نیروهای شناور، خطوط
موانع، داده و توربین جابجایی زمین است.
در این پژوهش فرض شد که عیوب‌پایی در یک آراممکان گیر
لذا نیروهای داده و داده در نظر گرفته شده است. به این
مقدار فرضی در مهندسی عملاً برای حالت ارایی باید
عکس از توزیع فاکتوری و فلز گیری عناوین استفاده
کننده ترکیبی در این سیستم می‌تواند این
ام ام‌بی‌اچ‌بی‌اچ اولیه هر در نظر گرفته می‌گردد.
مسلماً ترم نیروهای در هنگامی که در آراممکان گیر
و تابع آن می‌باشد با به داده دیگر داده و به
بعنوان تابع به توانتیکی می‌توان باختن وضعیت از سرط این
عند از روش مشیده سه‌گانه انجام داده و گزارش آن را به
کننده ترکیبی در این

(2-3) نیروهای ترم‌بگذاری داده

در این تحقیق، نیروهای ترم‌بگذاری داده از ترکیب نیروهای
هیدرودینامیکی و نیروهای خطوط مکانی حاصل می‌شوند که هر
دو برای ضرای از بزرگتر یک محسوب می‌شود. نیروهای
بازگذاری داده حتی مرکز جرم کل سیستم انجام شده است.
که تعیین محسوسی نسبت به حالت تعادل اولیه خود دارند. به
این منظور ترم \(\sum F \) موجب در معادلات گسترش می‌شود به
تمام نیروهای مذکور، در دستگاه واسطه (X,Y,Z)
در نظر گرفته شده است.

\[
T_{x,y,z} = T_x(X',Y',Z') = \begin{bmatrix}
t^{x,y,z}_{11} & t^{x,y,z}_{12} & t^{x,y,z}_{13} \\
t^{x,y,z}_{21} & t^{x,y,z}_{22} & t^{x,y,z}_{23} \\
t^{x,y,z}_{31} & t^{x,y,z}_{32} & t^{x,y,z}_{33}
\end{bmatrix}
\]

(3)

\[
H_{0} = \begin{bmatrix}
h_{0} & h_{1} & h_{2} & \cdots & h_{n}
\end{bmatrix}
\]

(8)

\[
\sum \vec{F} = m \vec{a}
\]

(9)

\[
\rho_{\text{gas}} \frac{X^2}{\cos \theta} = \rho_{\text{gas}} \frac{Y^2}{\cos \theta} + h_{0}
\]

(10)

\[
H_{0} = \begin{bmatrix}
h_{0} & h_{1} & h_{2} & \cdots & h_{n}
\end{bmatrix}
\]

(6)
روش عینیبایی متعلق به کلاس پندری فازی

مقدار فازی، یک روش محاسباتی در میانگین اکثریت برای تعیین امتیاز فازی می‌باشد. با اعمال روش اکثریت برای تعیین امتیاز فازی، هر مقدار فازی به عنوان یک عددازده داده می‌باشد. اکثریت برای تعیین امتیاز فازی شامل دو مرحله زیر است:

1- برآورد مقدار فازی از دستگاه

2- محاسبه اکثریت برای تعیین امتیاز فازی

برای بدست آوردن گشتاور شناوری در دستگاه اینجا با استفاده از تبلیغ باینی سه در رابطه (8) نیروهای جدید انرژی به دستگاهی‌پنسره، سپس با ضرب خارجی بردار مربوط به مرکز شناور در نیروی شناوری تا گشتاور متغیر دسته می‌آید

$$M_{resting} = M_{mooring} + M_{line}$$
مقدار سازگاری یک حالت ناشناخته از سیستم با i این قانون را نشان ده که به صورت زیر تعیین می‌شود (مناظر تعریف عاملگر "*" در قسمت استنتاج) [17]

\[D_i = \sum_{i=1}^{m} \mu_{i}(r) \]

\[\mu_{i}(r) \] تعداد مشخصه‌های مورد استفاده دم i (مناظر x) در حالت i و در این تحقیق، کلاس‌بندی فازی مورد استفاده در دیتابیس با کلاس‌بندی فازی مورد استفاده در دیتابیس شده که در حال حاضر بیشتر در نرم‌افزارهای ساختاری و دیتابیس‌های فازی در داده‌های کلاس‌بندی فازی استفاده می‌شود. این سیستم به صورت زیر تعریف شده است:

\[\mu_{i}(x) = e^{-0.5 \left[\left(\frac{x - r}{\sigma} \right) \right]^2} \]

\[\sigma \] انحراف معیار مجازی و \(m \) مقدار مجازی مورد نظر است. انتخاب آن‌ها بستگی به اهمیت ارزیابی از هر دو کلاس می‌باشد [18] که در این بخش برای استفاده در دیتابیس‌های فازی، کلاس‌بندی فازی مورد استفاده در دیتابیس شده که در حال حاضر بیشتر در نرم‌افزارهای ساختاری و دیتابیس‌های فازی استفاده می‌شود. این سیستم به صورت زیر تعریف شده است:

\[\mu_{i}(x) = e^{-0.5 \left[\left(\frac{x - r}{\sigma} \right) \right]^2} \]

\[\sigma \] انحراف معیار مجازی و \(m \) مقدار مجازی مورد نظر است. انتخاب آن‌ها بستگی به اهمیت ارزیابی از هر دو کلاس می‌باشد [18]

\[P(x) = \frac{1}{2\pi \sigma} e^{-0.5 \left[\left(\frac{x - r}{\sigma} \right) \right]^2} \]

\[\sigma \] انحراف معیار مجازی و \(m \) مقدار مجازی مورد نظر است. انتخاب آن‌ها بستگی به اهمیت ارزیابی از هر دو کلاس می‌باشد [18]
چهار کابل کشیده در سیستم خطوط مهاری موجود می‌باشد، که هر کدام از کابل‌ها به صورت فردی با سختی 3.37×10⁴ N/m شدیده و با توجه به ظرف فردی می‌باشد. به صورت زیر فرض می‌شود.

\[
I_1 = 2.35 \times 10^7 \text{ kg.m}^2, I_2 = 4.37 \times 10^7 \text{ kg.m}^2, I_3 = 2.54 \times 10^7 \text{ kg.m}^2
\]

سیرت روتیور در نظر گرفته می‌شود. همه‌جی‌ها از قاعده برای که در داخل آپ قرار می‌گیرد 72m می‌باشند. مامان این‌رسی برج نیز به صورت زیر فرض می‌شود:

\[
I_{\text{کم}} = 3.57 \times 10^7 \text{ kg.m}^2, I_{\text{م}} = 9.28 \times 10^7 \text{ kg.m}^2
\]

کدنویسی MATLAB و با نوشتن توابع مناسب و دستور 5 اقدام به حل آن‌ها نمود. بدین‌منظور در این مقاله از مشخصات فیزیکی و مکانیکی توربین RNA ممان این‌رسی (A,B,C) است

\[
I = \begin{bmatrix}
I_1 & I_2 \\
I_2 & I_3
\end{bmatrix} = \begin{bmatrix}
3.57 \times 10^7 & 2.35 \times 10^7 \\
2.35 \times 10^7 & 4.37 \times 10^7
\end{bmatrix}
\]

\[
F = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \end{bmatrix}^T
\]

\[
\text{y} = F(x) = \begin{bmatrix}
\text{undamaged} \\
\text{slight damage at line 1} \\
\text{moderate damage at line 1} \\
\text{severe damage at line 1} \\
\text{slight damage at line 2} \\
\text{moderate damage at line 2} \\
\text{severe damage at line 2} \\
\text{slight damage at line 3} \\
\text{moderate damage at line 3} \\
\text{severe damage at line 3} \\
\text{slight damage at line 4} \\
\text{moderate damage at line 4} \\
\text{severe damage at line 4}
\end{bmatrix}
\]

\[
D = \frac{K_u - K_d \times 100}{K_u}
\]
به عنوان یک نمونه از شبیه‌سازی سازه معیوب، در شکل‌های ۵ و ۶ به ترتیب آن وجود عیب باشد. درصد بر پایه دینامیکی سازه در کلیه ۱ و ۲ نشان داده شده است. در شکل‌های ۷ و ۸ نیز طیف فرکانسی نظره کدام از این شکل‌ها نمایش داده شده است. همانطور که مشاهده می‌گردد، وجود عیب در هر کدام از کلیه بر روی پایش دینامیکی سازه و به دنبال آن طیف فرکانسی اثر خواهد گذاشت. گزارش این مسئله را می‌توان به تغییر یافتن شدت‌های بارگذاری در هر کدام از کلیه‌ها ارتباط داد. از آنجایی که کلیه‌های ۱ و ۳ و ۴ و ۵ در مقابل هم هستند، انتگرال عیب در آن‌ها یکسان خواهد بود. بنابراین در اینجا نتیجه اشکال مربوط به کلیه‌های ۱ و ۲ نشان داده شده است.

به عنوان ورودی سیستم کلاسیک نداشته باشد. به عنوان نمونه در شکل‌های ۴ و ۵ به ترتیب پایش دینامیکی سازه در حال سلام و طیف مرتبت با آن نشان داده شده است. در این شکل‌ها Xص و Xض و Xض و Xض بین ترتیب نشان داده شده است. دینامیکی توربین در درجات آزادی Yaw و Pitch, Roll.

جدول ۱: فرکانس‌های طبیعی استخراج شده

<table>
<thead>
<tr>
<th>mode</th>
<th>Natural Frequency [rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge</td>
<td>0.1423</td>
</tr>
<tr>
<td>Sway</td>
<td>0.1384</td>
</tr>
<tr>
<td>Heave</td>
<td>0.5607</td>
</tr>
<tr>
<td>Roll</td>
<td>0.222</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.2128</td>
</tr>
<tr>
<td>Yaw</td>
<td>0.1754</td>
</tr>
</tbody>
</table>

شکل ۲- پایش دینامیکی سازه سالم در هر یک از درجات آزادی

شکل ۳- تاثیر و وجود عیب در کلیه ۱ بر پایش دینامیکی سازه و مقایسه با حالت سالم

شکل ۴- طیف فرکانسی پایش دینامیکی سازه سالم در هر یک از درجات آزادی (مقایسه لگاریتویی)

لزیر به توضیح است که مقدار تاثیر با شکل‌های نظره در مرجع [۱۲]. می‌توان به صحت شبیه‌سازی انجام شده در این پژوهش پی برد. همچنین با توجه به شکل ۴ می‌توان به وجود پیک های فرکانسی که معرف هر کدام از فرکانس‌های غالب یا همان فرکانسی‌های طبیعی توربین با عنوان ورودی سیستم فازی هستند پی برد. این فرکانس‌ها در جدول ۱ آورده شده است.
پیشینه‌های فنی مطابق می‌نماید بنابراین شبیه‌سازی محیط همه‌چیز با عیب خطوط مهارتی برای پیدایش با استفاده از روش کلاس‌بندی فازی

همان‌طوریکه ملاحظه می‌شود با توجه به پیچیدگی دینامیک
سیستم توربین بادی شناور به عنوان معاونی کویل غیر خطی
دینامیکی، نتایج تاثیر عیب و شدت عیب بر روی رفتار پایش
دینامیکی سیستم پیچیده و به نهان شناسایی سیستم مشکل
می‌باشد. با عبارت دگر در سیستم که به خطوط مهارتی وارد
می‌شود، با توجه به شماره موقعیت کابل و شدت آسیب، نتایگ
خاصی بر دینامیک سیستم می‌گذرد. بنابراین برای پیش‌بینی
درست محل و شدت عیب، احتمال به یک فرد خبره و با توجه
است نمایانگری شکل‌های اخیر، اینگونه مثال‌های درون‌وزن و
عیب‌پیامی را به نحو احتمال شناور دهد. با توجه به مشکلات بیان شده در عیب‌پیام بر اساس نظر اپراتور، پایین به دنبال یک سیستم مانند روش کلاس‌بندی (Expert System)
هوشمند و خبردار فازی بود که بعد از آموزش‌های لازم به صورت خودکار نوع و شدت
عیب را شناسایی نماید. همان‌طوریکه در یکی از بابا به
می‌توان با استفاده از شیوه‌های حاصل از شبیه‌سازی، توانای
عضویت لازم در کلاس بندی فازی را تنظیم نمود و در عیب‌پیام
سیستم قاضی و نتایج حاصل از عیب‌پیام توضیح داده خواهد شد.

شکل 7 – تاثیر وجود عیب در کابل 1 بر طرف فک‌رکشی پایش سازه و
مقاشه با حالت سالم

شکل 8 – تاثیر وجود عیب در کابل 2 بر طرف فک‌رکشی پایش سازه و
مقاشه با حالت سالم

همان‌گونه که از شکل‌های 7 و 8 قابل مشاهده می‌باشد، در تمام
حالت‌های وجود عیب در خطوط مهارتی سیستم، حركت انتقالی
(حکم در راستای x) تغییر پیدا کرده است. این مشاهده، مسئله قابل انتظار است.
چون در صورتی که در کامدادی عیبی هست که در کابل‌ها کامدادی، نیروی
پاره‌گردنده در راستای z و گسترش پاره‌گردنده حول x تغییر دارد
می‌باشد. همچنین وجود عیب در کابل‌های 1 و 2 اثبات ایجاد
تغییرات پیش‌بینی در حركت انتقالی (حکم در راستای x و
حکم دورانی (دوانی) (x) نسبت به سایر درجات آزادی
pitch) نشان دهنده (roll و sway) نرخهای باره‌گردنده در راستای
سیستم. رزرا باره‌گردنده (roll و sway) و گسترش پاره‌گردنده حول x
در حکم دورانی (دوانی) (x) نسبت به سایر درجات آزادی
pitch) نشان دهنده (roll و sway) نرخهای باره‌گردنده در راستای
سیستم. رزرا باره‌گردنده (roll و sway) و گسترش پاره‌گردنده حول x

شکل 7 و 8 ردیاب احتمالات حکم و پاره‌گردنده در خطوط مهارتی سیستم

50
جدول 2 - میانگین و انحراف معیار هر یک از توابع کاوشی تعیین شده مربوط به هرکدام از شش فرکانس غالباً سازه (به عنوان ورودی و شرایط مختلف توربین بادی انحراف معیارها در داخل پیمانه نوشتگی شدهاند)

<table>
<thead>
<tr>
<th>فرکانس</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>عیب بیا شدت کم در کابل 1</td>
<td>0.041</td>
<td>0.042</td>
<td>0.043</td>
<td>0.044</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td>عیب بیا شدت متوسط در کابل 1</td>
<td>0.047</td>
<td>0.048</td>
<td>0.049</td>
<td>0.050</td>
<td>0.051</td>
<td>0.052</td>
</tr>
<tr>
<td>عیب بیا شدت زیاد در کابل 1</td>
<td>0.053</td>
<td>0.054</td>
<td>0.055</td>
<td>0.056</td>
<td>0.057</td>
<td>0.058</td>
</tr>
<tr>
<td>عیب بیا شدت کم در کابل 2</td>
<td>0.059</td>
<td>0.060</td>
<td>0.061</td>
<td>0.062</td>
<td>0.063</td>
<td>0.064</td>
</tr>
<tr>
<td>عیب بیا شدت متوسط در کابل 2</td>
<td>0.065</td>
<td>0.066</td>
<td>0.067</td>
<td>0.068</td>
<td>0.069</td>
<td>0.070</td>
</tr>
<tr>
<td>عیب بیا شدت زیاد در کابل 2</td>
<td>0.071</td>
<td>0.072</td>
<td>0.073</td>
<td>0.074</td>
<td>0.075</td>
<td>0.076</td>
</tr>
</tbody>
</table>

فرکانس استخراج شده از سازه توربین بادی شناور با وضعیت نامشخص از نظر سلامتی سازه معلوم باشد. هدف این اقدام، اعطای اصلاحات مناسب بر اساس مشخصات و وضعیت سازه از نظر اینکه در کدام یک از کلاسها قرار دارد، مشخص شود. یک اثرات وابسته از طرح مصارف و نسخت توسط این شکلها و مقایسه نتایج فیزیکی فرکانس‌های استخراجی با نماگین توابع رسم‌شده، کلاس مورد نظر را تشخیص دهد. با این حال نسبت آن به این که در نجوم در این مرحله نباید با استفاده از یک شیست کلاس‌بندی فازی، به گونه‌ای که در بخش‌های قبلی توضیح داده شد، کاملاً احساس می‌شود. این شیست هم‌معنی‌هایی خطاهای قبیل توضیح داده شد، به صورت خودگردان شکل فرکانس‌ها را با عنوان ورودی دریافت می‌کند و بعد از قرار دادن در معادله (15) و همچنین اعمال معادله (16) شماره کلاسی که سازه در شرایط آن کلاس قرار دارد را مشخص می‌نماید.

در شکل‌های 9-الف و 9-ب، تابع توزیع احتمالی برای ω، ω0 و ω00 نشان داده شده است. لازم به توضیح است که در هرکدام از شکل‌های شکلگیری نسبت مطلق میزان احتمال به کلاس‌های عیب با نگاه‌های مختلف برای های مربوط به ترمیم گردیده است. بعضی از کلاس‌های همبستگی خیلی کمی که یکدیگر دارند. به عنوان مثال در شکل‌های مربوط به ω0، عیب شدید در کابل 1 با عیب شدید در کابل 3 همبستگی ندارد. بعیاره برگی مقدار میانگین ایندو کلاس از هم چنان مشابهی که یکی با کم و زیاد کردن انحراف معیار، تابع احتمالی مربوط به این دو کلاس همبستگی نمی‌گذرد. از طرفی بعضی از کلاس‌ها نظر کلاس مربوط به عیب کم در کابل 1 و عیب متوسط در کابل 3 همبستگی بسیار زیاد دارند که این همبستگی به دلیل نزدیکی بودن میانگین آنها با یکدیگر می‌باشد. حال فرض می‌شود ش
جدول ۲- درصد موفقیت عضوی‌ها مربوط به هر کدام از کلاس‌های عضو

| درصد موفقیت | وضعیت عضو | بدون نویز | با نویز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Snr = ۸۰</td>
<td>۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰/۹/۹۹</td>
<td>۰۰/۹/۹۹</td>
<td>۰۰/۹/۹۹</td>
<td>۰۰/۹/۹۹</td>
</tr>
</tbody>
</table>

به توجه با این چالش مشاهده می‌گردد که از لحاظ بدون نویز عضوی‌یا به نحو احتمالاً در تمامی کلاس‌های عضو، انجام گرفته شده و با درصد سپس بالایی موفقیت بوده است. از نظر بازده نویز، همان‌طور که قابل انتظار است، قابلیت روی پیشنهاد در تشخیص موفق کلاس‌های عضو کاسته می‌شد و با این وجود در حضور نویز ضعیف، درصد قابل توجهی از کلاس‌های عضو تشخیص داده شده که این نشانگر مقیاس بودن نسبی روش به نویز با شدت ضعیف است که اغلب در عمل، در هنگام معیوب شدن سنسورها با استفاده از سنسورهای نه جدی دقیق محتمل است. نتیجه با شدت شدید شدن عضو در ضمن انتظار بهتر شدن عضوی‌یا نمی‌توان داشته، به عبارت دیگر نمی‌توان ادعا نمود که مقدار درصد موفقیت راهنما مشخص با شدت عضو دارد، این رفتار بینی‌سوزت قابل توجه است که قطعی شدید عضوی‌یا تغییر می‌یابد، تغییر

MATLAB در محیط awgn استفاده از دستور

که در آن N_t تعداد کل نمونه‌های شبیه‌سازی شده و N_s تعداد نمونه‌های درست تشخیص داده شده در کلاس متنوع می‌باشد.

مقادیر درصد موفقیت‌های متنوع در جدول ۲ نشان داده شده است. در این جدول، درصد موفقیت مهر نوع عضو درجه شده و در نهایت درصد موفقیت متنوع نیز اعلام گردیده است. همچنین به منظور مختلف بر روی مشخصه‌های استثماری اعمال گردیده (تویز ضعیف و قوی)، سپس درصد موفقیت مهر اشاره باید هر دو حالت در چهار داستان به همراه میانگین درصد موفقیت مهر کلاس نشان داده شد. لازم به توضیح است که نویز نیلری قطعی دو روش موتور-کارلو و بر اساس نتایج توزیع احتمالی مثالی کاپسیک تولید شده است. (با

$S_N = \frac{N_s}{N_t} \times 100$ (۲۱)

در نتیجه با توجه به روابط بالا، بردارهای واحد به شکل زیر محاسبه می‌گردد:

\[
\begin{bmatrix}
 u_1 \\
u_2 \\
u_3
\end{bmatrix} = C_3^T \begin{bmatrix}
 u_1 \\
u_2 \\
u_3
\end{bmatrix}
\]

\[
\begin{bmatrix}
 u_1 \\
u_2 \\
u_3
\end{bmatrix} = \begin{bmatrix} C_1 \\
C_2 \\
C_3 \end{bmatrix} \begin{bmatrix}
 u_1 \\
u_2 \\
u_3
\end{bmatrix}
\]

(۴-۳)

\[
\begin{aligned}
u_i &= \cos X_i \cos X_y u_x \sin X_y u_y + \sin X_i \sin X_y u_z \\
u_y &= \sin X_i \sin X_y u_x + \cos X_i \cos X_y u_z \\
u_z &= u_z \\
\end{aligned}
\]

در نتیجه سرعت زاویه‌ای به این ترتیب حاصل می‌گردد:

\[
\begin{aligned}
\omega_i &= \dot{X}_i \left(\cos X_i \cos X_y u_x \sin X_y u_y + \sin X_i \sin X_y u_z \right) \\
&\quad + \dot{X}_y \left(\sin X_i \sin X_y u_x + \cos X_i \cos X_y u_z \right) + \dot{X}_z u_z \\
\end{aligned}
\]

(۴-۵)

پیوست B - جنبه‌ای استخراج معادلات دینامیکی حرکت

همان طریقه‌ی در بخش ۲-۲ بیان شد، بنابراین رابطه (۲) در بخش مذکور به صورت زیر تنوشته می‌شود:

\[
\sum M = \left(\dot{\mathbf{H}}_i \right)' + \omega_i \times \mathbf{H}_i
\]

(۵-۱)

همچنین مومنت زاویه‌ای کلی سیستم برار موی سیستم یک تک اجزا (G_y و Tower) جوی‌کننده‌ی حرکت کلی سیستم (G_y) به صورت:

\[
\sum M = \left(\dot{\mathbf{H}}_i \right)' + \omega_i \times \mathbf{H}_i
\]

(۵-۱)

پیوست A - زوايا اولر

در شکل زیر زاویه‌ای اولر با ترتیب ۱-۲-۳ با متمایز نمودن رنگ‌ها، به صورت واضح نشان داده می‌شود.

![شکل Z-1-1.png](attachment:Z-1-1.png)

شکل Z-1-1: Zوايا اولر

با توجه به شکل ۱-۱، سرعت Zوايا اولر بر جریه به شکل زیر بدست می‌آید:

\[
\omega_i = \dot{X}_i u_x + \dot{Y}_i u_y + \dot{Z}_i u_z
\]

(۱-۱)

در این معادله برای بدست آوردن بردارهای واحد در دستگاه ارتباط بین دستگاه‌های مشخص شده در شکل ۱-۱ به صورت زیر به دست آورده می‌شود:

\[
\sum M = \left(\dot{\mathbf{H}}_i \right)' + \omega_i \times \mathbf{H}_i
\]

(۵-۱)

پیوست B - جنبه‌ای استخراج معادلات دینامیکی حرکت

همان طریقه‌ی در بخش ۲-۲ بیان شد، بنابراین رابطه (۲) در بخش مذکور به صورت زیر تنوشته می‌شود:

\[
\sum M = \left(\dot{\mathbf{H}}_i \right)' + \omega_i \times \mathbf{H}_i
\]

(۵-۱)

همچنین مومنت زاویه‌ای کلی سیستم برار موی سیستم یک تک اجزا (G_y و Tower) جوی‌کننده‌ی حرکت کلی سیستم (G_y) به صورت:
زیر می‌باشد:

\[
\hat{H}_n = \hat{H}_n^{\prime} + \hat{H}_n^\delta
\]

(ب-2)

که در آن، **\(\hat{H}_{\infty}^{\prime} \) مونتم زاویه‌ای **\(\hat{H}_{\infty}^\delta \) مونتم جرم Tower حموله‌ای (G) در راستای **\(\hat{H}_{\infty} \) ماتریس اصلی Tower محورهای اصلی روند و چون از حاصل ضرب ناسور اینتا می‌باشد و سپس به دستگاه وسطه انتقال داده می‌شود، مونتم زاویه‌ای **\(\hat{H}_{\infty}^{\prime} \) و **\(\hat{H}_n^\delta \):

\[
\left\{ \begin{array}{l}
\hat{H}_n^\delta = \hat{H}_n^{\prime} + \hat{\rho}_{G/G} \times m_\delta \vec{v}_g \\
\hat{H}_n = \hat{H}_n^{\prime} + \hat{\rho}_{G/G} \times m_\delta \vec{v}_g
\end{array} \right.
\]

(ب-3)

با استفاده از روابط زیر به دست می‌آید:

\[
\begin{align*}
\hat{\rho}_{G/G} \times m_\delta \vec{v}_g & = \hat{\rho}_{G/G} \times m_\delta \vec{v}_g \\
& = m_\delta \hat{\rho}_{G/G} \times \vec{v}_g \\
& = m_\delta \hat{\rho}_{G/G} \times (\vec{v}_g + \vec{\omega}_g \times \vec{p}_{G/G})
\end{align*}
\]

(ب-4)

با جاگذاری سرعت‌ها در معادله (3):

\[
\{ \begin{array}{l}
\vec{v}_g = \vec{v}_g + \vec{\omega}_g \times \vec{p}_{G/G} \\
\vec{v}_g = \vec{v}_g + \vec{\omega}_g \times \vec{p}_{G/G}
\end{array} \right.
\]

(ب-5)

با جمع طرفین معادله (ب-5):

\[
\hat{\rho}_{G/G} \times m_\delta \vec{v}_g + \hat{\rho}_{G/G} \times m_\delta \vec{v}_g = m_\delta \hat{\rho}_{G/G} \times (\vec{v}_g + \vec{\omega}_g \times \vec{p}_{G/G})
\]

(ب-6)

با توجه به تعیین مکان جرم (0,0,0) و ساده‌سازی معادلات به شکل زیر بدست می‌آید:

\[
\hat{H}_n = \hat{H}_n^{\prime} + \hat{\rho}_{G/G} \times (\vec{\omega}_g \times \vec{p}_{G/G})
\]

(ب-7)

(55)
ب ب جاگذاری معادلات (16) تا (19) در معادله (15).

\[
\vec{h}_{GR}^r = \begin{bmatrix}
I_A \cos^2 \beta + I_B \sin^2 \beta & (I_A - I_B) \sin \beta \cos \beta & 0 \\
(I_A - I_B) \sin \beta \cos \beta & I_A \sin^2 \beta + I_B \cos^2 \beta & 0 \\
0 & 0 & 1
\end{bmatrix} \hat{\omega} + \vec{H}^r
\]
(B-20)

که در آن \(\hat{\omega} \) سرعت زاویه‌ای مطلق روتور نسبی به دستگاه می‌باشد، از جمله \(I \) و \((A,B,C) \). \(\vec{H}^r \) سرعت زاویه‌ای روتور حول جهت مثبت \(\vec{H}^r \).

RNA مجموع مان مان اینترسی روتور و ناول برای مان اینترسی می‌باشد. \(I_0 \) از \(I_0 + I_r = I_c \) و جای \(I_c \) می‌باشد.

\[
H^r_{\alpha} = H^r_{\gamma} + H^r_{\beta} = T_{p_{m,0}} \begin{bmatrix}
I_0 + I_r & I_\alpha & + T_{p_{m,0}} I_r \vec{\psi}
\end{bmatrix}
\]
(B-14)

با باگذاری معادلات (8-22) در معادله (8) به شکل زیر می‌باشد:

\[
\vec{H}_{\alpha}^r = \vec{H}_{\alpha}^r + \vec{H}_{\beta}^r
\]
(B-23)

\[
H^r_{\alpha} = T_{p_{m,0}} \begin{bmatrix}
I_0 + I_r & I_\alpha & \vec{\psi}
\end{bmatrix}
\]
(B-15)

با محاسبه تک تک معادلات (15) \(\vec{H}_{\alpha}^r = \vec{H}_{\alpha}^r + \vec{H}_{\beta}^r \).

پیوست-C \- ماتریسهای انتقال

ماتریس‌های انتقال برای هر یک از دوران‌های \(T_{x_1}, T_{x_2}, T_{x_3} \) به پیوست-C می‌باشد:

\[
T_x(X) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos X_4 & -\sin X_4 \\
0 & \sin X_4 & \cos X_4
\end{bmatrix}
\]
(C-1)

\[
T_y(X) = \begin{bmatrix}
\cos X_5 & 0 & -\sin X_5 \\
0 & 1 & 0 \\
\sin X_5 & 0 & \cos X_5
\end{bmatrix}
\]
(C-2)

\[
T_z(X) = \begin{bmatrix}
\cos X_6 & -\sin X_6 & 0 \\
\sin X_6 & \cos X_6 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
(C-3)

\[
T_{s} = I_{s} \hat{\omega} + \vec{H}^s
\]
(B-12)

\[
\vec{H} = T_{p_{m,0}} \begin{bmatrix}
I_0 & I_\alpha & + T_{p_{m,0}} I_r \vec{\psi}
\end{bmatrix}
\]
(B-19)