Damage Identification of the Floating Wind Turbine Mooring Line by Fuzzy Classification

Aysan Jamalkia¹, Mir Mohammad Ettefagh²*, Alireza Mojtahedi³

¹ MS student, Mechanical Engineering Department, University of Tabriz; aysanjamalkia@yahoo.com
² Assistant Prof., Mechanical Engineering Department, University of Tabriz; ettefagh@tabrizu.ac.ir (Corresponding Author)
³ Assistant Prof. Civil Engineering Department, University of Tabriz; mojtahedi@tabrizu.ac.ir

ARTICLE INFO

Article History:
Received: 25 Sep. 2014
Accepted: 14 Apr. 2015
Available online: 22 Sep. 2015

Keywords:
Floating Wind Turbine
Damage Identification
Dynamic Simulation
3D Multi-Body System
Fuzzy Classification

ABSTRACT

Structural health monitoring is essential for ensuring the structural safety performance during the service life. The process is of paramount importance in case of the floating wind turbine due to the structural parts subjected to the marine environmental risky conditions. In this paper a fuzzy-based damage identification method using dynamic response of the Spar floating wind turbine has been proposed. In the first step, the nonlinear equations of motion of the floating wind turbine system derived using the theorem of conservation of angular momentum and Newton’s second law. Then the variation values of the frequency characteristics of the structure in each DOFs due to stiffness changes of mooring lines (simulated damage) are considered as input features to the fuzzy system. Also the fuzzy system was trained based on calibrating of the membership functions by defining the damage classes properly. For validating the proposed method, noise with different SNRs was contaminated to the measured features and the success rate of the damage detection was calculated. The results showed that the proposed method is able to identify the damage classes with acceptable success rate.
با‌دیده‌ی فراصلی‌ی بین‌مهم‌ترین تجربی‌های خود از توجه به یافته‌های بیشترین ملاحظه ویژه‌ی دسترسی به مورد بی‌خاری‌دیگری برای اهدافی که در سرمایه‌داری‌ها و مالی‌های کتاب‌های مختلف از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نکته‌ی اصلی با مدل‌سازی‌هایی از جمله تجربی‌های غیب‌ی از این نظری‌ها نک‌...
مرجع [11]. با استفاده از معادلات اولر-بوت، یک مدل کششی مرتبط بین شده از توربین بادی با یک پایه شناور Spar ارائه شده است. این نیز با استفاده از معادلات اولر-بوت، معادلات دینامیکی کامل کویل شنیدنی نیز سازه شناور با سازه زیرسازی (سرعت و نرخ جنبی) و تمام شرایط استرخی و استرخز بین 12 نقطه اخیر این تعداد از توربین دینامیکی، انتزاعی باعث شده شدة است. این نیز برای مدل‌سازی توربین‌های پایدار شناور، بسیار مورد استفاده قرار گرفته شده است. چنین شبیه‌سازی با استفاده از روش ارائه شده در مرجع [12] با استراحت دقیق معادلات دینامیکی حاکم انجام شده است. سپس حل داده MATLAB معادلات با استفاده از کد نوپستی توپیز در محیط MATLAB مهای شدن است. به‌علاوه نسبت‌واره‌های عویضانی برای سازه مورد مطالعه تمریک نموده رود و سپس سیستم کانسپسی فازی بر اساس این عویضات قرار گرفته است. نتایج، شبیه‌سازی روشن عکس بایا بهینه بر کلاس‌بندی فازی بر روی مشخصات دینامیکی سازه سالم و معمولاً انجام شدند. جهت ارزیابی روشن پیش‌نهادی آن در شناسایی عویضات مختلف مسیره در آقای مثبت با محیط دستگاههای مختلف استرخ ریز و نتایج به صورت درصد مثبتی عیب‌بایی گزارش شده است.

2- مدلهای دینامیکی توربین‌های پایدار شناور

توربینهای بادی شناور معمولاً به صورت دومت نصب شده نظر

گرفته می‌شود [12]. 1- باتورین، که شامل پایه (قسمتی که

داخل آن قرار می‌گیرد) و پریون شناور (Tower) می‌باشد.

2- ترکیب روبرو و استرخز (RNA)، که اراده اصلی به دنبال حرکت

دارند. برای استرخ معادلات حرکت، یا از دستگاه‌های مختصات

مختصات استرخ کرد که در شکل 1 نشان داده شده است. شکل 1

دستگاه‌های مختصات اولر-بوت (X,Y,Z) و (X,Y,Z)

مختصات استرخی اولیه (X,Y,Z) با استفاده از دستگاههای

این دستگاههای اینترس اولیه (X,Y,Z) در حالت

تعداد اولیه سیستم چک چک، جهت استرخی در جذور کلی

و (X,Y,Z) در سطح آب قرار دارد. و (X,Y,Z) و سیستم و

dستگاههای وسطی مطلوب به بسمه‌یست در دستگاههای (A,B,C)

برای توصیف زاویای انحراف بزرگ از زاویای اول استفاده می‌شود.

که در شکل 2 توضیح داده شده است. تریب دوای زاویای بزرگ مهم

است برای که در حالت کلی 12 حالت وجود دارد که در این

پژوهش حالت 1-30-1 30-1 حالت که کارده شده است. ظهیر این حالت X2

بعد حالت Y و سیستم Y بوسیله X2 زوایای آنها

بر این بارتری این از X2 X2 X2
\[
\begin{align*}
H^{\prime}_{01} &= I_0 \hat{\omega}_I + H' \\
\sum I &= \bar{M}_{\text{wave}} + M_{\text{wind}} + \bar{M}_{\text{restoring}} \\
\end{align*}
\]

\[\omega_0 = \omega_0 (X, Y, Z, t)\]

\[\begin{align*}
\theta_{01} &= \frac{I_0 \hat{\omega}_I \sin \beta + I_0 \hat{\omega}_I \cos \beta + I \omega_{01} }{m_{01}} \\
\end{align*}\]

\[\begin{align*}
\sum M &= \frac{D}{dt} H^{\prime}_{01} = \frac{d}{dt} H^{\prime}_{01} + \tilde{\omega}_I \times H^{\prime}_{01} \\
\end{align*}\]
در ادامه به چکوگی انتخاب شد. این ماتریس به شکل زیر بسته می‌آید.

\[
\begin{bmatrix}
T_{x,y,z}
\end{bmatrix} = \begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\]

در رابطه فوق هدف ذکر شده است، که نقش تعریف مشتق ماتریس برابر است با مشتق نسبت به زمان، به‌طوری‌که البته دوباره نشان داده می‌شود که مشتق نسبت به زمان مترک ها به یک مقدار ثابت می‌شود.

\[
\sum F = m \ddot{a}
\]

در آن شرکت هدف جمله کل سیستم، \(\sum F\) هم مجموع تمام نیروهای خارجی (X,Y,Z) می‌باشد که شامل نیروهای شناور، خطوط، مهاری، بن، موج و نیروی جهت زمین است.

\[
\beta = \omega_s \cos \beta
\]

در این پژوهش فرض شد که \(\beta\) به دلیل اینکه آرام آن‌ها می‌باشد، لذا نیروی موج و بن با نظر داشت که در محله مشاهده، به‌طوری‌که برای افزایش سرعت نیروی توربین به استفاده از این موج تراکت کننده روتر و قفل گیرینک توربین استفاده نموده‌ایم که این امر موجب تحریک اولیه مورد نظر در توربین می‌گردد.

\[
\begin{bmatrix} x \\
y \\
z
\end{bmatrix} = h_0 + r \theta
\]

در تحقق نیروهای بارگذاری‌شده از ترکیب نیروهای هیدرودینامیکی و نیروهای خطوط ماهی حاصل می‌شود که خیلی دیگر بوده و برای افزایش مقدار پرداختن به سطح سیستم، می‌توان استفاده از روش برزبری کرد. به‌طوری‌که در مسیر گرفته شده است و به موجب آن این سیستم به سه نیروی سیستم می‌گردد:

\[
\begin{bmatrix} X \cr Y \cr Z \end{bmatrix} = -h_0 + \frac{r}{2h} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix}
\]

در فاصله قسمت تحتای استوانه‌ها می‌باشد. از همین نتیجه است که این معادلات با استفاده از نرم‌افزار CATIA و محاسبه دقیق مرکز شناور نسبت انتزاع به شکل زیر است:

\[
\begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{X} \cr \dot{Y} \cr \dot{Z} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix} \begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix}
\]

در این تحقیق، نیروهای بارگذاری‌شده از ترکیب نیروهای هیدرودینامیکی و نیروهای خطوط ماهی حاصل می‌شود که خیلی دیگر بوده و برای افزایش مقدار پرداختن به سطح سیستم، می‌توان استفاده از روش برزبری کرد. به‌طوری‌که در مسیر گرفته شده است و به موجب آن این سیستم به سه نیروی سیستم می‌گردد:

\[
\begin{bmatrix} X \cr Y \cr Z \end{bmatrix} = -h_0 + \frac{r}{2h} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix}
\]

در فاصله قسمت تحتای استوانه‌ها می‌باشد. از همین نتیجه است که این معادلات با استفاده از نرم‌افزار CATIA و محاسبه دقیق مرکز شناور نسبت انتزاع به شکل زیر است:

\[
\begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{X} \cr \dot{Y} \cr \dot{Z} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix} \begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix}
\]

در این تحقیق، نیروهای بارگذاری‌شده از ترکیب نیروهای هیدرودینامیکی و نیروهای خطوط ماهی حاصل می‌شود که خیلی دیگر بوده و برای افزایش مقدار پرداختن به سطح سیستم، می‌توان استفاده از روش برزبری کرد. به‌طوری‌که در مسیر گرفته شده است و به موجب آن این سیستم به سه نیروی سیستم می‌گردد:

\[
\begin{bmatrix} X \cr Y \cr Z \end{bmatrix} = -h_0 + \frac{r}{2h} \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix}
\]

در فاصله قسمت تحتای استوانه‌ها می‌باشد. از همین نتیجه است که این معادلات با استفاده از نرم‌افزار CATIA و محاسبه دقیق مرکز شناور نسبت انتزاع به شکل زیر است:

\[
\begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{X} \cr \dot{Y} \cr \dot{Z} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\
2t_{21} & t_{22} & t_{23} \\
2t_{31} & 2t_{32} & t_{33}
\end{bmatrix} \begin{bmatrix} \dot{\beta} \cr \dot{\phi} \cr \dot{\theta} \end{bmatrix}
\]

2- برای دسته آبی پیش‌نبش در دستگاه ایستاده با استفاده از تبدیل بیان شده در رابطه (8)، نیروها از دستگاه ایرانسی به دستگاه، سیستم با ضرب باریک بردار مرتبط با مرکز شناور در نیروی شناوری، گشتوفر مناطق دسته می‌آید T_{restoring}.

M_{restoring} = M + M_{mooring}

IF THEN

v IS LOW

\[
F_{line}^L = T_{e} + \frac{ES}{L} \left(\frac{\rho_{EA} - L}{\rho_{EA}} \right) \hat{F}_{EA}^L
\]

\[
M_{restoring} = M + M_{mooring}
\]
مقدار سیزگاری یک حالت ناشناخته از سیستم باِر اَمین قانون را نشان دهد که به صورت زیر تعریف می‌شود (مناظر برای تعریف عاملگر "ب" در قسمت استنتاج):

\[D_i = \sum_{l=1}^{m} \mu_{i,l} \]

(15)

\[\mu_{i,l} \]

\[\mu_{i,l} \in [0,1], \quad \sum_{l=1}^{m} \mu_{i,l} = 1 \]

(16)

\[D_i = \frac{\sum_{l=1}^{m} \mu_{i,l}}{m} \]

(17)

\[\mu(x) = e^{-0.5(\frac{x-m}{\sigma})^2} \]

(18)

\[y = \left(x \right)^{\frac{1}{2}} \]

(19)

\[f(x) = 3 \]

(20)

\[P(\omega) = \frac{1}{2\pi \sigma} e^{-0.5(\frac{\omega}{\sigma})^2} \]

(21)

\[\text{در بخش بعد، مراحل شبیه‌سازی مذکور توضیح داده خواهد شد.} \]

\[R_i : \text{If} \ x_i \text{is} F_i \text{and} \ x_j \text{is} F_j \text{and} \ ...	ext{then} \ y = C_i \]

(13)

\[i = 1, 2, 3, ..., M \]

(22)

\[y = \left(x \right)^{\frac{1}{2}} \]

(23)

\[P(\omega) = \frac{1}{2\pi \sigma} e^{-0.5(\frac{\omega}{\sigma})^2} \]

(24)

\[\text{در بخش بعد، مراحل شبیه‌سازی مذکور توضیح داده خواهد شد.} \]

\[R_i : \text{If} \ x_i \text{is} F_i \text{and} \ x_j \text{is} F_j \text{and} \ ...	ext{then} \ y = C_i \]

(13)

\[i = 1, 2, 3, ..., M \]

(22)

\[y = \left(x \right)^{\frac{1}{2}} \]

(23)

\[P(\omega) = \frac{1}{2\pi \sigma} e^{-0.5(\frac{\omega}{\sigma})^2} \]

(24)

\[\text{در بخش بعد، مراحل شبیه‌سازی مذکور توضیح داده خواهد شد.} \]

\[R_i : \text{If} \ x_i \text{is} F_i \text{and} \ x_j \text{is} F_j \text{and} \ ...	ext{then} \ y = C_i \]

(13)

\[i = 1, 2, 3, ..., M \]

(22)

\[y = \left(x \right)^{\frac{1}{2}} \]

(23)

\[P(\omega) = \frac{1}{2\pi \sigma} e^{-0.5(\frac{\omega}{\sigma})^2} \]

(24)

\[\text{در بخش بعد، مراحل شبیه‌سازی مذکور توضیح داده خواهد شد.} \]
\[x = \{ \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6 \} \]

\[y = F(x) = \]

\[
\begin{align*}
\text{undamaged} \\
\text{slight damage at line 1} \\
\text{moderate damage at line 1} & \text{severe damage at line 1} \\
\text{slight damage at line 2} & \text{moderate damage at line 2} \\
\text{severe damage at line 3} & \text{slight damage at line 3} \\
\text{severe damage at line 3} & \text{moderate damage at line 3} \\
\text{severe damage at line 4} & \text{moderate damage at line 4} \\
\text{severe damage at line 4} & \text{moderate damage at line 4} \\
\text{severe damage at line 4} & \text{moderate damage at line 4} \\
\text{severe damage at line 4} & \text{moderate damage at line 4} \\
\end{align*}
\]

\[D = \frac{K_u}{K_d} \times 100 \]
به عنوان یک نمونه از شبیه‌سازی سازه معروف، در شکل‌های ۵ و ۶ به ترتیب اثر وجود عیب با فرکانس ۵ و ۴ به ترتیب با پایین دينامیکی سازه در حال سالم و طرف مربوط با آن نشان داده شد. در این شکل‌ها X_5 و X_4 به ترتیب نشان دهنده پایین X_5 و X_4 دینامیکی توربین در درجات آزادی Yaw و $Pitch$ و $Roll$ می‌باشد.

![Schema 3: دینامیک سازه سالم در هر یک از درجات آزادی](image)

![Schema 4: یک طرفدار هفتپای در کاتل ۲ تر پاسخ دینامیکی سازُ هقایسک](image)

لازم به توضیح است که مقایسه شکل‌های نظری در لحظه [۱۲] می‌توان به سخت شبیه‌سازی که انجام شده بود در این پژوهش پی برده. همچنین با توجه به شکل ۴ می‌توان به وجود پیک هایی ورودی سازه که در محدوده ۴ از فرکانس‌های غالب با همان فرکانس طبیعی توربین به عنوان ورودی سیستم فازی هستند پی برد. این فرکانس‌ها در جدول ۱ آورده شده است.

<table>
<thead>
<tr>
<th>جدول ۱: فرکانس‌های طبیعی استخراج شده</th>
<th>Natural Frequency [rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge</td>
<td>۰.۱۴۲۳</td>
</tr>
<tr>
<td>Sway</td>
<td>۰.۱۳۸۴</td>
</tr>
<tr>
<td>Heave</td>
<td>۰.۵۶۰۷</td>
</tr>
<tr>
<td>Roll</td>
<td>۰.۲۲۲</td>
</tr>
<tr>
<td>Pitch</td>
<td>۰.۲۱۲۸</td>
</tr>
<tr>
<td>Yaw</td>
<td>۰.۱۷۵۴</td>
</tr>
</tbody>
</table>
پیش‌پیشی‌هاي فنی مطالبی می‌باشد. بنابراین شیب‌سازی توربین‌های عقب با عقب خطوط مهاری برای مناسب‌سازی جریان و نیروسازی شده است.

همان‌طوریکه ملاحظه می‌شود، طبق توجه به پیچ‌گذی دینامیکی سیستم توربین، باید شناور به علت معدودی کوپل غیر خطی دینامیکی، تغییر ناشی از تغییر نقطه و شدت عقب بر روی رفتار ویژه دینامیکی سیستم پیچیده‌تر و به تعقیب نشدنی در این سیستم بر سریع بسیار می‌باشد. بنابراین در این سیستم می‌باشد. بنابراین در این سیستم با توجه به مطالعه بیشتر و اجرای تست‌های بسیار درست محل و شدت عقب، احتمال بکری به تغذیه است. تفاوت‌ها و مشاهده‌های نخست از مدل نوره، روش کلاس‌بندی فازی چپ که بعد از آموزش‌های لازم به صورت خودکار نوشت و شدت عقب در شیب‌سازی می‌باشد. همان‌طوریکه در بخش قبلی، می‌توان با استفاده از داده‌های حاصل از شیب‌سازی سازه، تغییر عضوت‌های آزم در کل‌سیستم فازی را تنظیم نمود و در عقب‌بایی سازه به کار برد. در خشک بدن در مورد این قسمت از آموزش سیستم فازی و نتایج حاصل از عقب‌بایی توضیح داده خواهد شد.

۵ - نتایج و بحث

برای استخراج میانگین و انحراف معیار هر یک از توان‌ها کووی (رابطه (18)) مربوط به حالت و پیوسته‌سازی برای هر کدام از کلاس‌های تعیین شده در رابطه (20) انجام داده و بعد از استخراج طیف فکانسی بایک، پرامتر میانگین را به جدول۱ قابل مشاهده می‌باشد. می‌توان به دست آورد. از این‌رو در زبان فارسی: زیادی می‌باشد، زیرا به‌طور عمده می‌توان نشان دادن این اثر با استفاده از مجموعه‌های فازی باید یک‌پایه مناسبی باشد تا اختلاف بین داده‌های اندازه‌گیری شده مشخص شود. برای این منظور با استفاده از روش پیش‌بینی در مرجع (19) می‌توان انحراف معیار به نحو مناسبی با توجه به توزیع احتمالی هر کدام از کلاس‌ها، به‌دست ایجاد شده و در جدول ۱ درج گردیده است.

![شکل ۷- تاثیر ویژوال عقب در کل ۱ بر طبق فکانسی پایک سازه و مقایسه با حالت سالم](image)

![شکل ۸- تاثیر ویژوال عقب در کل ۲ بر طبق فکانسی پایک سازه و مقایسه با حالت سالم](image)

همان‌گونه که از شکل‌های ۷ و ۸ قابل مشاهده می‌باشد، در تمام حالت‌های ویژوال عقب در خطوط مهاری سیستم، حسک‌های انتقالی (حرکت در راستای x و y) به‌طور پیش‌بینی شده است. این مشاهده، مشهور قبل انتظاری، است. چون درصورتی که هر مقدار حسک‌های اسبی بهینه نیروی بارگذارنده در راستای x و y، گشتاور بارگذارنده حسک x تغییر یابد. همچنین ویژوال عقب در کل‌های 1 و 2 باعث ایجاد تغییرهای نیروی بارگذارنده در راستای x و y تغییر بی‌شماری در حسک‌های انتقالی (حرکت در راستای x و y) نسبت به سایر درجات ازدای (pitch) دورانی (دوران حسک roll و sway) نیروی بارگذارنده در راستای x و y گشتاور بارگذارنده حسک x و y ایجاد ایجادتغییرات بی‌شماری در حسک‌های انتقالی (حرکت در راستای x و y) دورانی (دوران حسک roll و sway) نسبت به سایر درجات ازدای (pitch) دورانی (دوران حسک roll و sway)
جدول ۲- میانگین و انحراف معیار هر یک از تغییرات طبیعی شده مرتب با هر کدام از شش فرقانس غالب سازه (به عنوان ورودی) و شرایط مختلف

<table>
<thead>
<tr>
<th>وضعیت عیب</th>
<th>۰۴</th>
<th>۰۵</th>
<th>۰۶</th>
<th>۰۷</th>
<th>۰۸</th>
<th>۰۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون عیب</td>
<td>۰۱</td>
<td>۰۲</td>
<td>۰۳</td>
<td>۰۴</td>
<td>۰۵</td>
<td>۰۶</td>
</tr>
</tbody>
</table>

فرقانس استخراج شده از سه توربين بادی شناور با وضعیت نامشخص از نظر سلامتی سازه معلوم بود. هدف این است که با اطلاعات موجود در این شکل‌ها و وضعیت شده از نظر انگیزک در کدام یک از کلاس‌ها قرار دارد، مشخص شود. یک آرایه‌ای مناسب نسبت به شکل‌ها و مقایسه مقدار فرقانس‌های استخراجی با میانگین توانی رسم شده، کلاس مورد نظر را مشخص دهد.

بتدراین در این مدل نیاز به استفاده از یک سیستم کلاس‌بندی فازی، به گونه‌ای که در یک چنین سیستم یک توضیح داده شد. کلاس‌بندی احساس می‌شود. این سیستم همانطوری که قبلاً توضیح داده شد، به صورت خودکار فرقانس را به عنوان ورودی دریافت می‌کند.

و بعد از قرار دادن در مدل (۰۵) و همچنین اعمال میاده (۱۶) شماره کلاسی که سازه در شرایط آن کلاس قرار دارد را مشخص می‌نماید.

در شکل‌های ۱-۹، با تابع توزیع احتمالی برای ۰۴ و ۰۵، نشان داده شده است. لازم به ذکر است که در هر کدام از شکل‌های نمودار ۱۲ تابع توزیع مرتب با کلاس‌های یک با رنگ‌های مختلف برای هر مربوطه ترسیم گردیده است. بعضی از کلاس‌های خیلی کمی یا یکدیگری دارند، به عنوان مثال در شکل‌های مربوط به ۰۴، عیب شدید در کلاس ۱ با عیب شدید در کلاس ۲ و ۳ همبستگی ندارد. به عبارت دیگر مقدار میانگین این و کلاس از یک چنین متغیر مرسومی که حتی کم و زیاد کردن انحراف معیار، تابع احتمالی مربوط به این دو کلاس همبستگی نخواهد داشت. از طرفی بعضی از کلاس‌ها تغییر کلاس مربوط به عیب کم در کلاس ۱ و عیب متوسط در کلاس ۷ و عیب خراب در کلاس ۹ عیب شدید در کلاس ۶، ۸ و ۹ و همچنین بسیار خراب دارند که این همبستگی به دلیل توزیع بودن میانگین آنها به یکدیگر می‌باشد. حاکی که در صورتی که قرار دادن را مشخص می‌نماید.
سپ از تخمین تولید عضویت نظر آن‌ها که در شکل‌های اخیر
ترسیم گردیده‌اند (مرحله آموزش کلاس‌بنی فازی). روش
پیشنهادی، مورد ارزیابی قرار می‌گیرد. این پیشنهادی
دیگر برای هر وضعیت عیب با کاهش درصد‌های سختی غير منتفی
با حالت آموزش (مجموعاً ۶۴۵) شبیه‌سازی) انجام
می‌گیرد. بعد از استخراج شکل فراکسان مربوط به هر شبیه‌سازی و
در نظر گرفتن این فراکسان‌ها به عوامل ورودی سیستم فازی و
عملیات کلاس‌بنی بر ای داده داده، شماره کلاس به عنوان
خروجی دریافت می‌گردد و با مقایسه این شماره کلاس به شماره
کلاس صحیح در هر شبیه‌سازی، درصد موفقیت (SR)، طبق زیر
محاسبه می‌شود.

\[
S_R = \frac{N_e}{N} \times 100
\]

که در آن \(N_e\) تعداد کل نمونه‌های شبیه‌سازی شده و \(N\) تعداد
نمونه‌های درست تشخیص داده شده در کلاس متناقض می‌باشد.

مقدار درصد موفقیت‌های متناصر در جدول ۳ نشان داده شده است.
در این جدول، درصد موفقیت‌های نوع عیب درجه شده و در نتایی
درصد موفقیت متوسط نیز اعلام گردیده است. همچنین به منظور
مطالعه تأثیر نویز اندازه‌گیری، شده دو نوع نویز با
مختلفی از عوامل تشخیصی استخراجی اعمال گردیده (نواص ضایع
و قوی)، سپس درصد موفقیت مورد اشکال بای هر دو حالت در
جدول آخر به همراه میانگین درصد موفقیت برای هر کلاس نشان
داده شده. لازم به توضیح است که نویز تولیدی توسط روش مونت
کارولو بر اساس تابع توزیع احتمالی گاوسی تولید شده‌است. (با

MATLAB در محیط awgn)

![شکل ۹- توابع توزیع احتمالی فراکسان‌های غربال (ورودی‌های سیستم فازی) مرتبط با پاسخ دینامیکی منتفی‌بین با (ب) حرکت انتقالی سازه‌های بادی: شاروی، حرکت دورانی سازه‌های بادی شاروی‌بندی و حرکت انتقالی سازه‌های بادی: شاروی‌بندی]](image-url)

2- Matha, D., (2009), Model development and loads analysis of an offshore wind turbine on a tension leg platform, with a comparison to other floating turbine concepts, Master's thesis, University of Colorado-Boulder, April.

\[
C_1 = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos X_4 & \sin X_4 \\
0 & -\sin X_4 & \cos X_4 \\
\end{bmatrix}
\]
\[
C_2 = \begin{bmatrix}
\cos X_5 & 0 & \sin X_5 \\
0 & 1 & 0 \\
-\sin X_5 & 0 & \cos X_5 \\
\end{bmatrix}
\]
\[
C_3 = \begin{bmatrix}
\cos X_6 & \sin X_6 & 0 \\
-\sin X_6 & \cos X_6 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
(A-2)

\[
C^T = \begin{bmatrix}
C_3 & C_2 & C_1 \\
\end{bmatrix}
\]
(A-3)

\[
\begin{align*}
\dot{u}_x &= \cos X_5 \cos X_6 \ddot{u}_x - \cos X_5 \sin X_6 \ddot{u}_y + \sin X_6 \ddot{u}_z \\
\dot{u}_y &= \sin X_5 \cos X_6 \ddot{u}_x + \cos X_6 \ddot{u}_y \\
\dot{u}_z &= \sin X_6 \ddot{u}_y + \cos X_6 \ddot{u}_z \\
\ddot{u}_x &= u_x \\
\end{align*}
\]
(A-4)

در نتیجه شرط زاویایی به این ترتیب حاصل می‌گردد:

\[
\omega_j = \dot{X}_4 \left(\cos X_4 \cos X_6 \dot{u}_x - \cos X_4 \sin X_6 \dot{u}_y + \sin X_6 \dot{u}_z \right) + \dot{X}_5 \left(\sin X_4 \cos X_6 \dot{u}_x + \cos X_6 \dot{u}_y \right) + \dot{X}_6 \dot{u}_z
\]
(A-5)

\[\sum M = (\dot{H}_i)^T + \omega \times H_i \]
(B-1)

پیوست A - زواهای اوپر

در شکل زیر زواهای اوپر با ترتیب 1-2-3-4-5-6 رشته‌ای به صورت واضح نشان داده می‌شود.

\[\omega = X_4 \dot{u}_x + X_5 \dot{u}_y + X_6 \dot{u}_z \]
(A-1)

در این معادله برای بدست آوردن بدنهای واحد در دستگاه ابتدا ماتریس‌های اندازه‌ریزی و انتقال را استخراج نموده، سپس ارتباط بین دستگاه‌های مشخص شده در شکل A-1 به صورت زیر به دست آورده می‌شود:

پیوست B - جنبی استخراج معادلات دینامیکی حرکت

همان‌طوریکه در بخش 2-1 بهانه، ابتدا رابطه (2) در بخش مذکور به صورت زیر نوشته می‌شود:

همچنین مومنت زاویایی کلی سیستم برای مومنت تک تک اجرا (G) جدول مرکز جرم کلی سیستم (RNA و Tower)
مرونم زاویه‌ای Tower
چرم جرم (G) و مانند در راستای (x, y, z) محورهای محاسبه شده و چون Tower از حاکمیت نان‌سازی این روش و سرعت زاویه‌ای بدست می‌آید و سپس به دستگاه واسطه (x, y, z) انتقال داده می‌شود:

\[H^*_o = T_{os}^{-1}(I, \tilde{\omega}_s) \tag{B-8} \]

از آنجایی که دستگاه‌های Tower (x, y, z) و (x, y, z) به (A, B, C) ماتریس انتقال داده می‌شود، حاکمیت RNA را به دست می‌آورد، حاکمیت RNA از حاکمیت نان‌سازی و سرعت (x, y, z) انتقال (x, y, z) به دست می‌آید و سپس به دستگاه واسطه (x, y, z) انتقال داده می‌شود:

\[H^*_o = T_{os}^{-1}(I, \tilde{\omega}_s) \quad , \quad H^*_o = T_{os}^{-1}(I, \tilde{\omega}_s) \tag{B-9} \]

که در آن، DNA ماتریس انتقال (x, y, z) به (A, B, C) ماتریس تبدیل می‌شود که (x, y, z) و (x, y, z) به (A, B, C) ماتریس انتقال داده می‌شود.

\[T_{os} = T_{os}^{-1}(I, \tilde{\omega}_s) \]

با جاگذاری سرعت‌ها در معادله (3):

\[\begin{bmatrix} \rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \\
\rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \end{bmatrix} \tag{B-5} \]

با جمع طرفین معادله (5):

\[\begin{bmatrix} \rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \\
\rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \end{bmatrix} \tag{B-6} \]

با توجه به تعیین مرکز جرم (0) و ساده‌سازی معادلات، به شکل زیر بدست می‌آید:

\[\begin{bmatrix} \rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \\
\rho_{A_i/A_o} x_m v_{A_i} + \rho_{A_i/A_o} x_m v_{A_o} \end{bmatrix} \tag{B-7} \]
با جاگذاری معادلات (16) (تا 19) در معادله (15):

\[
\begin{bmatrix}
I_A \cos^2 \beta + I_B \sin^2 \beta & (I_A - I_B) \sin \beta \cos \beta & 0 \\
(I_A - I_B) \sin \beta \cos \beta & I_A \sin^2 \beta + I_B \cos^2 \beta & 0 \\
0 & 0 & 1
\end{bmatrix} \hat{\omega}_z + \hat{H}^r
\]

که در این سرعت زاویه‌ای مطلق روتور نسبت به دستگاه سرعت می‌باشد.

\[
H_{g_x} = H_{g_x}^r + H_{g_x}^r = T_{r \rightarrow s}(I_x + I_r) \hat{\omega}_x + T_{r \rightarrow s} I_r \hat{\psi}
\]

با جاگذاری معادلات (20) (تا 22) در معادله (8) به شکل زیر ساده‌سازی می‌شود:

\[
\hat{H}^r = I_\phi \hat{\omega}_z + \hat{H}^r
\]

پیوست C - ماتریس‌های انتقال

ماتریس‌های انتقال برای هر یک از دوران‌های رجید به صورت زیر می‌باشند:

\[
T_z(X_z) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos X_z & -\sin X_z \\
0 & \sin X_z & \cos X_z
\end{bmatrix}
\]

\[
T_z(X_z) = \begin{bmatrix}
\cos X_z & 0 & -\sin X_z \\
0 & 1 & 0 \\
\sin X_z & 0 & \cos X_z
\end{bmatrix}
\]

\[
T_z(X_z) = \begin{bmatrix}
\cos X_z & -\sin X_z & 0 \\
\sin X_z & \cos X_z & 0 \\
0 & 0 & 1
\end{bmatrix}
\]