Experimental Modeling Requirements of TLPs in Waves

Amir Hossein Razaghan1, Mohammad Saeed Seif2, Mohammad Reza Tabeshpour3

1Msc, Center of Excellence in Hydrodynamic and Dynamic of Marine Vehicles, Sharif University of Technology; razaghan@mech.sharif.ir
2Professor, Center of Excellence in Hydrodynamic and Dynamic of Marine Vehicles, Sharif University of Technology; seif@sharif.edu
3Assistant Professor, Center of Excellence in Hydrodynamic and Dynamic of Marine Vehicles, Sharif University of Technology; Tabeshpour@sharif.ir

\section*{ABSTRACT}

Tension leg platform is a compliant structure with vertical moorings and added buoyancy force. In this paper, effective parameters on experimental modeling of TLPs have been investigated. Experimental modeling with correct scale factor has been done in Sharif University of Technology marine engineering laboratory test basin, deep water simulation capability was discussed and finally the model, launched in the basin. Pretension modeling is another conceptual component that could be easily analyzed. Ultimately, sea keeping results of ISSC TLP model due to the regular laboratory waves with different heading angles and two amplitudes were extracted. The main purpose is ISSC TLP frequency response and surge beating analysis by model testing.
سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن
در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعمال از سکوهای اسپار، پایه کشتی و همچنین شناور صورت گرفته است و به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.

شکل 1- سکوی پایه کشتی چهار سطون هر هر با درجه آزادی آن

در سالهای اخیر تست‌های آزمایش‌گاهی متداولی در آزمایش‌گاه‌های مختلف به منظور انالیز سازه و هیدرودینامیک انواع سازه‌های فرالحی شناور اعم از سکوهای اسپار، پایه کشتی و همچنین شناور فرالحی‌ای که به استاندارد نامه‌ای که در نرم‌افزارهای تحلیل‌العملیاتی به روش سنتی استفاده محسوب می‌شود. تست‌های آزمایش‌گاهی بر روی این سیستم‌ها به صورت در محویت فیزیکی کاربردی صورت می‌گیرد.
اثبات‌های خاص آزمایش‌گاهی به دلیل Center) تغییرات اعمال شده در 2007 API برای پخت خمیر کوکه است. تطابق ضعیف بین نتایج آزمایش‌گاهی و حل عدید غیر کویل، تطابق بسیار خوب بین نتایج آزمایش‌گاهی حل عدید کوپل برای پایه‌های اندازه گیری شده حاکم در درجه‌انداز پیوست و هم‌شتابی تنش در توانایی بیش از جمله مهم‌ترین نتایج این پژوهش می‌باشد. در این مقاله پرداختن‌های مهم‌ترین آزمایش‌گاهی سکوی به نام تکنیك پیشنهادی ISSC TLP، در سطح اصلی این سکوی، پرونده این مقاله توسط فنیکس سیستم روش ماشین و صورت آزمایش قرار گرفته است. در مقاله شیست تحقیق آزمایش نقاط حذف آن برای درجات آزاد سرح و اسپ و هویه آنانی می‌گردد.

- انتخاب مقیاس مدال‌سازی

به‌منظور انتخاب یک مقیاس مناسب برای مدال‌سازی یک سکوی پایه کشی از روی ابعاد واقعی، توانایی سیستم تولید امواج در بربری شرایط دریایی از اهمیت بالایی برخوردار است. احتمالاً ارتفاع موج تولیدی در امکان شکست قدرت دارد که در برریامش آن می‌باشد. مدل‌سازی ماشین‌های مناسب در اطمینان این مقیاس آزمایش‌گاهی در مورد آزمایش‌گاهی 50 تا 1/250

3- معادلات اساس حاکم

- قوانین تشکیل جهت مدل سل‌سازی پایه کشی

با توجه به این که شیب‌های فرد، منابعی برای بازگشت در تناک‌های کوکه حاصل اهمیت است و برای انتخاب امواج در تناک‌های باریک از دیواره‌ها روی خود دهلیز تأثیر گذاشت. اطلاعاتی که برای شکست کردن یک پایه در این راستا مناسب در پایه شیب، به نظر رفته‌های ابعاد بالا است. مدل‌سازی با توجه به شکست‌های هندسی، ابعاد مدل به صورت خطا با نسبت تشکیل مدل‌سازی می‌گردد. ترکیب طول مختصه سازه واقعی و مدل است

\[L_p = \lambda L_m \]

به‌طور کل سرعت در ابعاد واقعی و مدل هستند.

\[u_p = \sqrt{u_m} \]

نسبت جرم سازه اصلی (\(m_p \)) و مدل (\(m_m \)) از طریق رابطه

\[z_{\text{تعیین}} \text{ می‌شود:} \]

| ملاحظات زیر کشی سطحی | در تستان مدال‌سازی | دهم‌انسیون رفیقی | و همکاران/از decoy, سال 1992, 11 (100) | 16:23 +0330 on Wednesday December 1st 2021 | Downloaded from marine-eng.ir at 16:23 +0330 on Wednesday December 1st 2021 | بی‌دردست. این طراحی خاص آزمایش‌گاهی به دلیل تغییرات اعمال شده در 2007 API برای پخت خمیر کوکه است. تطابق ضعیف بین نتایج آزمایش‌گاهی و حل عدید غیر کویل، تطابق بسیار خوب بین نتایج آزمایش‌گاهی حل عدید کوپل برای پایه‌های اندازه گیری شده حاکم در درجه‌انداز پیوست و هم‌شتابی تنش در توانایی بیش از جمله مهم‌ترین نتایج این پژوهش می‌باشد. در این مقاله پرداختن‌های مهم‌ترین آزمایش‌گاهی سکوی به نام تکنیك ISSC TLP، در سطح اصلی این سکوی، پرونده این مقاله توسط فنیکس سیستم روش ماشین و صورت آزمایش قرار گرفته است. در مقاله شیست تحقیق آزمایش نقاط حذف آن برای درجات آزاد سرح و اسپ و هویه آنانی می‌گردد.

- انتخاب مقیاس مدال‌سازی

به‌منظور انتخاب یک مقیاس مناسب برای مدال‌سازی یک سکوی پایه کشی از روی ابعاد واقعی، توانایی سیستم تولید امواج در بربری شرایط دریایی از اهمیت بالایی برخوردار است. احتمالاً ارتفاع موج تولیدی در امکان شکست قدرت دارد که در برریامش آن می‌باشد. مدل‌سازی ماشین‌های مناسب در اطمینان این مقیاس آزمایش‌گاهی 50 تا 1/250

3- معادلات اساس حاکم

- قوانین تشکیل جهت مدل سل‌سازی پایه کشی

با توجه به این که شیب‌های فرد، منابعی برای بازگشت در تناک‌های کوکه حاصل اهمیت است و برای انتخاب امواج در تناک‌های باریک از دیواره‌ها روی خود دهلیز تأثیر گذاشت. اطلاعاتی که برای شکست کردن یک پایه در این راستا مناسب در پایه شیب، به نظر رفته‌های ابعاد بالا است. مدل‌سازی با توجه به شکست‌های هندسی، ابعاد مدل به صورت خطا با نسبت تشکیل مدل‌سازی می‌گردد. ترکیب طول مختصه سازه واقعی و مدل است

\[L_p = \lambda L_m \]

به‌طور کل سرعت در ابعاد واقعی و مدل هستند.

\[u_p = \sqrt{u_m} \]

نسبت جرم سازه اصلی (\(m_p \)) و مدل (\(m_m \)) از طریق رابطه
امرسحیان، رضوی، و مهدی‌نژاد، الیزابت ام، مدل مکانیک یک سکوی پایه کششی با

\[
\left(\frac{MY}{EI} \right)_p = \left(\frac{MY}{EI} \right)_m
\]

(6)

برای برقراری نسبت کششی کمپوزین استفاده کنید. از

معادله (6)، برای تعیین رابطه بین جریان استفاده مدل

دم و نانوی پروتکل امتیازده می شود که برای تاونند فقط

سختی محوری نسبت به بیه پای‌ها ارچ است و مجد نظر قرار

\[M \in \text{قدس} \text{ در اینجا } E \text{ مدل استاتیستیک } \]

\[E \text{ مدل محوری } \]

\[y \text{ فاصله آخرین رشته از محور خشی می باشد. } \]

\[\text{سختی خشی بین مدل و سازه اصلی از رابطه زیر مربوط هستند: } \]

\[
(El)_p = \lambda^2 (El)_m
\]

(7)

در نهایت ملاحظه می شود که برای برقراری رابطه بالا مدل

استاتیسیک بین مدل و سازه اصلی از رابطه زیر پیروی می کنند:

\[
E_p = \lambda E_m
\]

(8)

در اینجا \(\lambda \) اندازه مدل استاتیسیک ماده مورد استفاده برای

تانون در اینجا TLP باید مدل مورد استفاده برای تاونند در

نمونه واقعی باشند. برای این کار گرای باید جنس‌های مختلف تحت

ازمایش کشش قرار گیرد تا به نتیجه مورد ناز دست یدک.

که مدل‌سازی سختی خشی در تاونند هم به مدل ام ارزانی

سختی محوری جدید تبعید جنس تاونند و مقطع اما سبب

است. به همین منظور در مدل‌سازی آزمایش‌گذاری سکوی پایه

کششی، برای تاونند ها نتیجه مدل‌سازی سختی محوری به دلیل

بیشتر بودن محرک و تطبیقی بودن این سکوهای صورت می

پذیرد. \(A/E = \text{سختی محوری.} \)

\[
\frac{AE}{L}_p = \lambda^2 \frac{AE}{L}_m
\]

(9)

در اینجا \(\lambda \) مساحت مقطع تاونند و طول تاونند است. در این

مقاله از دو سکوی پایه کششی ISSC مدل ام ارزانی استفاده کرده است.

\[
M_p = \lambda^3 m_m
\]

(10)

دوره توان حركات 6 درجه آزادی مدل سکوی پایه کششی با

نمونه واقعی آن رابطه زیر رادردارد.

\[
T_p = \sqrt{\lambda} T_m
\]

(11)

شتاب نوسان حرکات در درجه آزادی برای استحکام تسهیل

سرعت نوسان در ان درجه آزادی به پای‌های حمایت در ان درجه

آزادی، این درجه بین نشان نوسان در مدل سکوی پایه

کششی و سازه اصلی برای عرضه در دو آزادی با توجه به اصول تشیه

از فرمول زیر پیروی می کند:

\[
x_p^2 = x_m^2
\]

(12)

همچنین جعبه نویسی روی در راستای محورهای مختلف می باشد

که واحده آن متر از در مقدار سرعت نوسان در راستای محورهای

محورهای مختلف است که واحده آن متر از تابع است. \(\lambda \) مقدار شتاب

نوسانی در راستای محورهای مختلف می باشد.

2-2 مدل سازی تانون در استفاده از تشیه کششی

مدل‌سازی آزمایشگاهی یک سکوی پایه کششی از دو بخش سازه

امتل و خطوط متغیر تشکیل شده است. دریک اصلی سازه که

تشکیل شده از سطح و پایون ها می باشد و به صورت

با نزدیک مدل کردن مدل استاتیسیک نسبت می دهد. اما برای خطوط

محار سکوی پایه کششی (تانون) به عنوان پایون سازه های باریک

و لازم باید مدل استاتیسیکین از تبدیل شود. این تبدیل مدل

یک مدل استاتیسیکین از تشیه کششی بسته می‌باشد. این دیناکردها که

تریفک سری‌های سازه‌های لاغر مثل خطوط

با نزدیک پیام و پروتکل تاونند. [12] مشخصات فنی

تانون: ابعاد سکوی پایه کششی خشی از قط و قط خارجی است

که در ام تاونند نهایت گرد. اما به همین‌طور فرآیند

مدل‌سازی به صورت دقیق از مدل کردن مشخصات فیزیکی کم

همتی اعم از سختی خشی می‌توان را کردن. به کمک

تانون ها تانون های ساخته شده از بلاستیک بقار دادن سیم

فولادی داخل آن می‌باشد. در شرایط خاص نیز می‌توان برای

ایجاد ساخت متفاوت جهت نسبت به کمیتی سکویی

وقتی و ارجاع دادن نتایج مدل به آن از فنرهای محوری که نقش

تانون را به مدل مورد نظر نمایش می‌دهد استفاده نموده.

چه مدل‌سازی خشی که نسبت به ساخته محوری

قبلاً (محوری) برای تانون کم همتی می‌باشد، این گونه

بین تانون سکوی پایه کششی واقعی و تانون مدل آزمایشگاهی

برای باشکه به تشیه نوسانی معروف است.

[12]
مطالعه عمق و طول تاندون ها از مهم‌ترین الزامات مدل‌سازی آزمایشگاه سکو پایه کشی اس. نتایج آزمایش‌های روز این مدل برای ۲۳۰۰ عمق واقعی قابل ارجاع است. با در نظر گرفتن روابط مربوط به تنش‌های اعضا، شکر و مواد (متریال) موجود برای مدل آلومینیوم پی از تعیین ابعاد در نرم‌افزار Sustainable راحت شده و خروجی های سازه ای آن استخراج شده است.

هر کدام از اعضای سازه در این ممان اینشری جری جهود تغییر وابسته به اعضای سازه نیست، این در نتایج توزیع تمامی این ممان اینشری ها با گروه‌گیری بیشتر را وصیت سکو به صورت سازه های اینشری زول، بیچ و یا کلی در سکو
صلب در جدول ۱ ارائه گشته‌است.

جدول ۱- مشخصات انبوهی مدل و برون‌تراپ سکو

<table>
<thead>
<tr>
<th>مشخصه</th>
<th>واحد</th>
<th>سکو جدول ۱</th>
<th>سکو جدول ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
<tr>
<td>ارتفاع سطحی</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
<tr>
<td>ارتفاع سطحی</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
<tr>
<td>ارتفاع سطحی</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
<tr>
<td>ارتفاع سطحی</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
<tr>
<td>ارتفاع سطحی</td>
<td>m</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>وزن سطحی</td>
<td>[kg/m²]</td>
<td>۹۴۱</td>
<td>۹۴۱</td>
</tr>
</tbody>
</table>

شکل ۲- پلان و نمای این سکو را نشان می‌دهد.
7- حوضچه کشش مرکز پژوهشی هم‌نی‌ده‌ی دریا
مدل سکو در مرکز پژوهشی هم‌نی‌ده‌ی دریا (آستانه شریف) نام شده است. این مرکز به کانالی به طول 75 متر و عرض 15 متر و عمق 12 متر مجهز می‌باشد. ضمناً این آزمایشگاه مجهز به سیستم موج از نوع فلزی هوشمند که توانایی تولید امواج منظم و نامنظم را دارد. بر اساس حوضچه، آموزشی است که مشکلات ناشی از خروجی‌گی کاهش پایداری و عدم تربیت از آن برای انجام پژوهش کشش استفاده می‌شود. از این مدل پس از تاسیس کشش تحت نتایج مناسب توانایی تابیت گردش و پیروی طبیعی حرکات در استیجار شد. در جدول 1 پیروی طبیعی 6 درجه آزادی سکو از حرکات مدیریت و مناسبی پروپتایپ به مجتمع‌های بسته از فناوری و تست ارتعاش آزاد برای آزمایش و برای پیروی طبیعی حرکات سکو مجزا می‌باشد. البته آن آموزشی است که تحت نتایج مناسب توانایی تابیت گردش و پیروی طبیعی حرکات در استیجار شد. در جدول 1 پیروی طبیعی 6 درجه آزادی سکو از حرکات مدیریت و مناسبی پروپتایپ به مجتمع‌های بسته از فناوری و تست ارتعاش آزاد برای آزمایش و برای پیروی طبیعی حرکات سکو مجزا می‌باشد.

جدول ۲- پیروی طبیعی حرکات در 6 درجه آزادی مدل و پروپتایپ

<table>
<thead>
<tr>
<th>پروپتایپ</th>
<th>حرکت سکو مدل</th>
<th>مدل (نظارت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروپتایپ</td>
<td>سرچ</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>اسوم</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>پای</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>ردی</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>بیچ</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>هیو</td>
<td>0.84</td>
</tr>
</tbody>
</table>

در نهایت، مدل‌سازی‌ها به مهارت 12 تا نام‌سازی به‌کار گرفته، این روش استفاده شده است به منظور تبیین داده‌های جایگاه حرکات در 6 درجه آزادی سکو، از یک مدل‌سازی شیب‌اساس، استفاده شده است. برای افزایش این سیستم جهت ذخیره‌سازی داده‌ها نیز با استفاده از نرم‌افزار LabView طراحی شده و با فرآیندهای انترگرای‌ها، میاب و هر چند، داده‌های جایگاه جابجایی تعیین شدند. همان‌طور که در جدول ۵ خصوصی است که بالا رفته با به‌کار گرفتن در سیستم‌های تکنیکی مدل سکو در آزمایشگاه

سکو 3 تصویر شناسی سکوی مکانیکی شده با استفاده از روش‌های طراحی" Motion & Rigid Body Rotation" انتقال داد. جهت برخورداری سکوی مکانیکی شده با استفاده از سیستم‌های تکنیکی

سکو 3 تصویر شناسی سکوی مکانیکی شده با استفاده از روش‌های طراحی" Motion & Rigid Body Rotation" انتقال داد. جهت برخورداری سکوی مکانیکی شده با استفاده از سیستم‌های تکنیکی و همکاران تا علائم آزمایشگاه مدل سکوهای پایه گشته در امواج
در نهایت این مدل در آزمایشگاه مهندسی دریا دانشگاه شریف به آب اندازی شده و در گذران امواج با دو زاویه برخورد درجه و توان موج را افزایش داده و این امواج با اندازه موج 4 سانتیمتر و 6 سانتیمتر و بیشتر و سپس به طول موج واگر این مدل در جدول 2 درجاتی نیست.

اگر به ذکر این امواج با ارتفاع موج 4 سانتیمتر و 6 سانتیمتر در آزمایشگاه با توجه به مقياس مدل‌سازی مناسب با امواج با ارتفاع 8 متر و 12 متر در برای واحد می‌باشد.

جدول 6- پارامترهای امواج برای شرایط واقعی ISSC TLP

<table>
<thead>
<tr>
<th>طول موج (m) امواج</th>
<th>طول موج (m) واقعی</th>
<th>براده امواج</th>
<th>براده امواج (m)</th>
<th>براده امواج (m) واقعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12</td>
<td>0.38</td>
<td>0.72</td>
<td>0.66</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0.53</td>
<td>0.84</td>
<td>0.76</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>0.67</td>
<td>1.12</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>0.77</td>
<td>1.40</td>
<td>0.90</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>0.86</td>
<td>1.69</td>
<td>1.09</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>1.01</td>
<td>2.03</td>
<td>1.17</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>1.13</td>
<td>2.36</td>
<td>1.30</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>1.29</td>
<td>2.65</td>
<td>1.48</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>1.46</td>
<td>2.95</td>
<td>1.64</td>
</tr>
</tbody>
</table>

جدول 5- عناصر افزوده حركات دوربین سکو را با استفاده از تست ارتعاش آزاد مدل سازه در آب آرام ارائه می‌دهد.

<table>
<thead>
<tr>
<th>پروتوپای بر اساس براده امواج (m)</th>
<th>حركت سکو</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 6 (m)</td>
<td>حاصل (m)</td>
</tr>
<tr>
<td>12</td>
<td>0.72</td>
</tr>
<tr>
<td>15</td>
<td>0.84</td>
</tr>
<tr>
<td>18</td>
<td>0.90</td>
</tr>
<tr>
<td>21</td>
<td>1.09</td>
</tr>
<tr>
<td>24</td>
<td>1.17</td>
</tr>
<tr>
<td>27</td>
<td>1.30</td>
</tr>
<tr>
<td>30</td>
<td>1.48</td>
</tr>
<tr>
<td>33</td>
<td>1.64</td>
</tr>
<tr>
<td>36</td>
<td>1.80</td>
</tr>
</tbody>
</table>

جدول 7- تست مدل در آزمایشگاه

<table>
<thead>
<tr>
<th>براده امواج (m)</th>
<th>براده امواج (m) واقعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>0.72</td>
</tr>
<tr>
<td>0.53</td>
<td>0.84</td>
</tr>
<tr>
<td>0.67</td>
<td>1.12</td>
</tr>
<tr>
<td>0.77</td>
<td>1.40</td>
</tr>
<tr>
<td>0.86</td>
<td>1.69</td>
</tr>
<tr>
<td>1.01</td>
<td>1.95</td>
</tr>
<tr>
<td>1.13</td>
<td>2.36</td>
</tr>
<tr>
<td>1.29</td>
<td>2.65</td>
</tr>
<tr>
<td>1.46</td>
<td>2.95</td>
</tr>
</tbody>
</table>

شکل 5- نمودن استقرار مدل با زاویه ۹۰ درجه نسبت به امواج

شکل 6- نمودن استقرار مدل با زاویه ۶۰ درجه نسبت به امواج
نمودارهای ایرانی دامنه پاسخ به سرعت گذاری و هیو در زاویه برخورد
موج ۲۵ درجه به ترتیب در شکل ۱۰ نوا همانند ۱۲ یا نشان می‌دهد.

نمودارهای ایرانی دامنه پاسخ به سرعت گذاری و هیو در زاویه برخورد
موج ۲۵ درجه به ترتیب در شکل ۱۰ نوا همانند ۱۲ یا نشان می‌دهد.

نتایج
نمودارهای ایرانی دامنه پاسخ به سرعت گذاری و هیو در زاویه برخورد
موج ۲۵ درجه به ترتیب در شکل ۱۰ نوا همانند ۱۲ یا نشان می‌دهد.

شکل ۶ - نحوه استقرار مدل با زاویه ۲۵ درجه نسبت به امواج
شکل ۷ - نسبت در دو زاویه برخورد ۲۵ درجه را نشان می‌دهد.

شکل ۸ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۹ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۰ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۱ - ایرانی دامنه پاسخ اسکی سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۲ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۳ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۴ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۵ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۶ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه

شکل ۱۷ - ایرانی دامنه پاسخ سرور هیو در زاویه ۲۵ درجه در دو دامنه
فلوند و گونه ارتفاع امواج با پریود بایین، کوتاه است و انرژی پایینی
دارند. اگر علیرغم تشکیل نیستند باسهایی به پزشک تولید کنند. در نزدیک پریود 7/9 ثانیه سوخت واقعی، برای تبدیل آزمایشگاهی
پیدا کردن گرافیکی موج قابل روبت است. دلیل این پدیده این است
که با توجه به پریود موج بیشتر، اندماش طول موج تهدیدی به
اندازه قابلیت بین پایه‌های سکو می‌باشد. بنابراین سان دانه حرکت
سکو افزایش پیدا می‌کند. در نزدیک پریود 5/5 ثانیه سوخت
آزمایشگاهی که مناسب با پریود 7/9 ثانیه درب‌یای واقعی می‌باشد
همانطور که در بالا بیان شده است بدنی ضریبان (Beating)
می‌دهد. هرچه از پریود 15/5 ثانیه فاصله گرفته شود پدیده ضریبان
کمتر از بین می‌روید. شکل 13، تغییرهای زمانی حرکت سرچک مدل
آزمایشگاهی در پریود 4 ثانیه موج آزمایشگاه مناسب با پریود
7/9 ثانیه می‌باشد. پدیده ضریبان قابل روبت است.

همانطور که ملاحظه می‌شود با افزایش پریود امواج مناسب با
افزار سطح امواج دانه حرکت سرچک هم رفتار بیشتر می
شود. در نزدیک پریود 30 ثانیه از امواج، نسبت دانه حرکت سرچک
به دانه موج در زاویه برخورد موج صفر درجه تقییای 1 برابر 1 خواهد
شد. در پریودهای بالای موج، امواج مربوط به 3 درجه
آزادی سرچک اسکو و با وارد تشکیل می‌کند که ممکن است بخاطر
های بسیار بزرگتر از نسبت دانه 1 بیست یک

در پریودهای بایینی موج نیز در سه درجه آزادی هیو، رول و پیچ
تشکیل رخ می‌دهد. اما در مودارهای ارائه شده در این مقاله به
عمل محدودیت‌های آزمایشگاهی این مهم بررسی نشده است.
محدودیت‌های آزمایشگاهی در بررسی پریودهای کوچک و
پریودهای بزرگ موج که مناسب با طول موج های بسیار کوچک و
سبلار بزرگ هستند عبارت است از اکماتون و تنظیمات آزمایشگاهی.

این حوضچه کشش و قدرت موجساز در تولید امواج با طول موج

download from marine-eng.ir at 16:23 +0330 on Wednesday December 1st 2021

شکل 13- بررسی پدیده

شکل 14- حذف پدیده

انرژی من رود با دور شدن از پریود گیر افتادگی موج که نوعی
تشکیل محسوب می‌شود دیگر پدیده ضریبان قابل روبت نیست.
حرکت هیوی از پدیده گیر افتادگی موج تأثیر بیشتری نسبت به
اینهاسته نیروهای حاصل از امواج روز پایه‌ها و مقاطع سفر به
ناتوانی هیو در پریود موج 7 ثانیه با توجه به شکل 9 و شکل
12 قابل روبت است.
پیچک کلی به توجه به نمودارهای ایران در الحاق می‌توان از ذکر وسایل راهبردی مناسب و غیر مناسب در دو دامنه موفقیت تقریباً و یکدیگر می‌باشد.

5- تحلیل نتایج
در این مقاله به جمع‌بندی مدلهای آزمایشگاهی سکوی پایه کششی برداشت شده است. هفظ از این تحقیق بررسی از ارزامات مدلسازی آزمایشگاهی سکوی پایه کششی و استفاده از مقادیر تشخیص و گویندجه مدلهای ابعاد و خطوط مهاری می‌باشد.

1- در مدلهای آزمایشگاهی سازه‌های فراپلیاک خطوط مهاری از جنس شدن با توجه به محدودیت حاکم تحلیل شده است.

2- نقش‌گذاری کششی نمودارهای با توجه به نمودارهای اندازه‌گیری در طرح جفت‌پرداشت و طرح جفت‌پرداشت شده است. بررسی این نقش‌گذاری در دامنه های برترک همیشه می‌تواند به عنوان فعالیت‌های آنی انجام کامل نهایی خود را به صورت مناسبی لاحق کردد.

12- تشکر و قدردانی
از انجا که انجام این پروژه آزمایشگاهی باید در رشته علمی و تجریبی مدلهای مناسب باشد و در راه اندازی سیستم‌های آزمایشگاهی باید کمک‌های مناسبی تجربه است. برخورد لازم می‌دانم تا کلیه اعمال مناسبی آزمایشگاهی مهندسی در این افتتاحیه به بهترین شکست و قدردانی کنیم.

11- نتیجه‌گیری
در این پژوهش به بررسی هیدرودینامیکی سکو پایه کششی نوع برداشت شده است. هم‌آمد با پژوهشی گیرفتگانی می‌باشد. در این مقاله این سکو وجود داشته و مانند که مقدار پژوهش زندگی به این پژوهش نشان می‌دهد، به ضریب در محدوده از بین درآمدها. در هر دو کپ‌ز و هر دو پژوهش قرار می‌گیرد.

بررسی این قضیه در دامنه های برترک می‌تواند به عنوان فعالیت‌های آنی انجام کامل نهایی خود را به صورت مناسبی لاحق کردد.
Conference of Offshore Mechanics and Arctic Engineering, Houston, Jan 30th.

1- International Ship Structures Committee
2- Tendon
3- Slack
4- Prototype

